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Abstract. We describe a numerical method to simulate an elastic shell im-

mersed in a viscous incompressible 
uid. The method is developed as an

extension of the immersed boundary method using shell equations based on

the Kirchho�-Love and the planar stress hypotheses. A detailed derivation of

the shell equations used in the numerical method is presented. This derivation

as well as the numerical method, use techniques of di�erential geometry in

an essential way. Our main motivation for the development of this method

is its use in the construction of a comprehensive three-dimensional computa-

tional model of the cochlea (the inner ear). The central object of study within

the cochlea is the \basilar membrane", which is immersed in 
uid and whose

elastic properties rather resemble those of a shell. We apply the method to a

speci�c example, which is a prototype of a piece of the basilar membrane and

study the convergence of the method in this case. Some typical features of

cochlear mechanics are already captured in this simple model. In particular,

numerical experiments have shown a traveling wave propagating from the base

to the apex of the model shell in response to external excitation in the 
uid.

1. Introduction

This paper describes a general method of simulation of an elastic shell immersed

in a viscous incompressible 
uid. The method is developed as an extension of

the immersed boundary method originally introduced by Peskin and McQueen to

study the blood 
ow in the heart. The immersed boundary method has proved to

be particularly useful for computer simulation of various bio
uid dynamic systems.

In this framework the elastic (and possibly active) biological tissue is treated as a

collection of elastic �bers immersed in a viscous incompressible 
uid. This formu-

lation of the method together with references to many applications can be found in

[13]. A partial list of the applications of the immersed boundary method includes

in addition to the blood 
ow in the heart (see the extensive work of Peskin and

McQueen, e. g. [14, 10]) also platelet aggregation during blood clotting [4], 
ow

of suspensions [5, 15], aquatic animal locomotion [4], a two-dimensional model of

cochlear 
uid mechanics [1] and 
ow in collapsible tubes [3]. For a recent review of

the immersed boundary method, see [12].

Many man-made materials can be modeled as elastic shells and elastic shells

are also ubiquitous in nature, however our motivation for the development of the

method comes from the study of the cochlea. The auditory signal processing in

the cochlea depends crucially on the dynamics of the basilar membrane, which is

immersed in a viscous incompressible 
uid of the cochlea, and despite its name the

basilar membrane is actually an elastic shell. The numerical method for elastic

shell{
uid interaction presented here was subsequently used in the construction of
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MCA93S004 from the MetaCenter Allocations Committee.
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a complete three-dimensional computational model of the macro-mechanics of the

cochlea which incorporates the intricate curved cochlear anatomy. The results of

this work will be reported in future publications.

The cochlea is the part of the inner ear where sound waves are transformed into

electrical pulses which are carried by neurons to the brain. It is a small snail-

shell-like cavity in the temporal bone, which has two openings, the oval window

and the round window. The cavity is �lled with 
uid, which is sealed in by two

elastic membranes covering these windows. The spiral canal of the cochlea is divided

lengthwise by the long and narrow basilar membrane into two passages that connect

with each other at the apex. External sounds set the ear drum in motion, which

is conveyed to the inner ear by three small bones of the middle ear. These bones

function as an impedance matching device, focusing the energy of the ear drum on

the oval window of the cochlea. This piston-like motion against the oval window

displaces the 
uid of the cochlea generating traveling waves that propagate along

the basilar membrane. The vibrations of the basilar membrane are detected by

thousands of microscopic sensory receptors, called hair cells, located on the surface

of the basilar membrane. The auditory signal processing in the cochlea is completed

by the hair cells converting these mechanical stimuli into action potentials in the

neurons attached to them, relaying this information to the brain.

Practically everything we know about the passive wave propagation in the cochlea

was discovered in the 1940s by Georg von B�ek�esy who carried out experiments in

cochleae extracted from human cadavers. Von B�ek�esy observed that a pure tone

input sound generates a traveling wave which reaches its peak at a speciÆc loca-

tion along the basilar membrane exciting only a narrow band of hair cells. This

characteristic location depends on the tone's frequency. By pinching the basilar

membrane with a tiny probe and observing the resulting displacement von B�ek�esy

discovered that the basilar membrane is, in fact, not a membrane, i. e. it is not

under inner tension, but an elastic shell, whose compliance varies exponentially

along the membrane. Von B�ek�esy�s extensive experimental work is summarized in

his book "Experiments in Hearing" [16]. For an excellent summary of more recent

work on the cochlea, see [6].

Cochlear mechanics has been an active area of research ever since von B�ek�esy's

fundamental contributions, yet many important questions are still open. Presently

there is no complete understanding of the mechanisms responsible for the extreme

sensitivity, sharp frequency selectivity and broad dynamic range of hearing. The

most rigorous mathematical analysis of the cochlea was carried out by Leveque, Pe-

skin and Lax in [9]. In their model the cochlea is represented by a two-dimensional

plane (i.e. a strip of in�nite length and in�nite depth) and the basilar membrane, by

a straight line of harmonic oscillators dividing the 
uid plane into two halves. The

linearized equations are reduced to a functional equation by applying the Fourier

transform in the direction parallel to the basilar membrane and then solving the

resulting ordinary di�erential equations in the normal direction. The functional

equation derived in this way is solved analytically, and the solution is evaluated

both numerically and also asymptotically (by the method of stationary phase).

This analysis reveals that the waves in the cochlea resemble shallow water waves,

i.e. ripples on the surface of a pond. A distinctive feature of this paper is the

(then speculative) consideration of negative basilar membrane friction, i.e., of an

ampli�cation mechanism operating within the cochlea.
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Like the cochlea, even the simplest three-dimensional 
uid{shell systems appear

to be too diÆcult to analyze, but using the methods presented here it is possible to

construct computational models for such systems. The construction of computa-

tional models for 
uid{shell con�gurations is however not easy, and the development

of these methods required supercomputing resources. Nevertheless, with the rapid

advances in computer technology, such computations will soon be feasible on a

workstation. The cochlea example is important also because the 
uid{shell system

simulation in this case can be compared with the extensive body of theoretical and

experimental research.

The theory of elastic plates and shells is a classical mathematical subject, which

is also an active area of contemporary research (see for example [2, 11, 17]). For

completeness, we derive in section 2 the elastic shell equations upon which the

numerical method is based. Shell theory is very naturally described in the language

of di�erential geometry and it is perhaps in this respect that the presentation in

section 2 somewhat di�ers from other accounts of the subject. Imagine a material

composed of very rigid straight line segments (�bers) coupled together and assume

that these �bers are perpendicular to some imaginary surface S in the middle of

the material. In other words, the material has a structure of a normal vector

bundle over the surface S. We shall assume that the base surface S is free to

undergo arbitrary small elastic deformations. The Kirchho�-Love hypothesis, is

the assumption that the deformation of the bundle is such that the �bers of the

deformed bundle are perpendicular to the deformed middle surface, and that these

�bers are not stretched during the deformation. In the language of di�erential

geometry this means that the shell has the structure of a normal vector bundle

which is preserved under elastic deformations. We shall call such a material an

elastic bundle. The Kirchho�-Love hypothesis implies that a deformation of the

base surface completely determines the deformation of the whole bundle. To ensure

that the �bers do not intersect each other we must assume that their length, i.e.,

the thickness of the bundle, is smaller than the radius of maximal curvature of the

base surface.

Taking the three-dimensional linear theory of elasticity as our starting point, and

using the Kirchho�-Love hypothesis, it is possible to derive the equations which

completely determine small deformations of elastic bundles. It turns out how-

ever that a realistic model has to satisfy the hypothesis of planar stress. Strictly

speaking, in linear elasticity the planar stress hypothesis is not consistent with the

Kirchho�-Love assumption. We utilize a common approach to \reconciling" the

two assumptions (e.g see [7]). The resulting equations constitute a system of three

partial di�erential equations in three unknown functions. They express the elastic

force exerted by the shell as a linear fourth order di�erential operator applied to the

displacement vector �eld. This di�erential operator is intrinsic to the base surface

of the bundle and its coeÆcients are tensorial quantities determined by the geom-

etry and the elastic properties of the bundle. This intrinsic geometric formulation

is essential in the formulation of the numerical method described in the following

section.

Section 3 outlines the immersed boundary method for shells. This is a modi�-

cation of the immersed boundary method as described in [13]. The main di�erence

in the algorithm is in the computation of the force that the material applies to the


uid. Here it is computed by discretizing the shell equations described in section 2.
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We describe in detail the discrete di�erential operators de�ned on the shell surface

which are used in the force computation.

In section 4 we describe a test model in which the shell resembles a piece of a

basilar membrane immersed in 
uid. We study the convergence of the algorithm in

this case and describe the numerical experiments carried out with this model. These

experiments have reproduced some of the typical features of cochlear mechanics,

such as the traveling wave propagating along the basilar membrane in response to

external excitation of the 
uid.

This work is based on the author's Ph.D. thesis completed at the Courant In-

stitute (NYU) under the supervision of Professor Charles S. Peskin. I would like

to thank Professor Peskin for his support, encouragement and patient guidance. I

would also like to thank Professor David McQueen for many conversations in which

I learnt a lot about scienti�c computing. I'd like to thank Professor Karl Grosh for

helping me understand shell theory.

2. Linear Elastic Deformations of Vector Bundles (Shell Theory)

LetM � R3 be a normal bundle over a surface S. We describe S by a coordinate

chart � : 
! R3, where 
 is a domain in R2. Let n : 
!M be the unit normal

vector �eld on S. The natural chart for M is � : 
� (�h0; h0)!M given by

�(q1; q2; t) = �(q1; q2) + tn(q1; q2);

and we assume, for simplicity, that the thickness of the bundle (= 2h0) is constant.
Let �� : 
 � (�h0; h0) ! R3 describe a 1-parameter family of deformations of

M , such that �0 = �. Our basic assumption is that each �� preserves the bundle

structure of M . Clearly, such a deformation is completely determined by the de-

formation of the base space S. In the framework of linear elasticity we work with

in�nitesimal deformations, i.e., vector �elds. We will assume that S is free to un-

dergo an arbitrary in�nitesimal deformation  = d

d�
j�=0�� and we shall determine

the corresponding in�nitesimal deformation V = d

d�
j�=0�� of M .

We begin with some preliminary remarks about the geometry ofM . Throughout

this chapter the indices are raised and lowered with respect to h, the metric of S.
We adopt the convention that greek indices take the values 1; 2, while roman indices
run through 1; 2; 3. The standard metric on R3 will be denoted by Æ:

Æ(X;Y ) =< X; Y >= X � Y;

@� = @

@q�
is a partial derivative and r is the standard 
at connection of R3.

2.1. The Geometry of the Vector Bundle. Let h = �� (ÆjS) denote the metric
of S in the chart �. The components of h are

h�� = @�� � @��:

Throughout this paper greek tensor indices are raised and lowered with respect to

the metric h. Let Np denote the unit normal vector to S at the point p 2 M .

Thus, n(q1; q2) = N�(q1;q2). We shall often abuse notation and identify n with

N . Similarly for other vector �elds. The second fundamental form of S is the

symmetric bilinear form acting on vectors tangent to the surface S de�ned by

b(X;Y ) =< rXN; Y > :
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Its components in the chart � are

b�� = @�n � @��:

The central role in the following analysis is played by the map � = �t, which we

de�ne to be the 
ow of N :

�t(p) = p+ tNp; p 2 S:

The di�erential of � is the map

�� : TpS ! T�(p)St;

where St = �t(S). Let X 2 TpS and let � be a curve on S such that �(0) = p,
�0(0) = X . Then

��X = ���
0

= (� Æ �)0

= (� + tN Æ �)0

= X + trXN

We shall regard �� as a symmetric tensor �eld on S. The components ��� of �� can
be expressed in the chart � as follows:

��� = < ��(@��); @�� >

= < @��+ tr@��
N; @�� >

= @�� � @��+ t @�n � @��

= h�� + t b�� :(1)

An important observation which will be useful later is:

(2) rXN = r��X
N

for any tangent vector X . Indeed, let ~� = � Æ �. Then ��X = ~�0 and

r��X
N = r~�0N

= lim
�!0

N(~�(�))�N(~�(0))

�

= lim
�!0

N(�(�)) �N(�(0))

�

= rXN

We denote the metric of M in the chart � by g. Its components, g
ij
= @i� � @j�,

are

g
��

= ��
����

g3� = 0

g33 = 1

The collection of parallel surfaces St forms a foliation of M . This foliation carries

the induced connection r given by

rXY = rXY� < rXY; N > N
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for any two vector �elds X and Y which are tangent to the foliation. The second

fundamental form of this foliation is the symmetric bilinear form acting on tangent

vectors de�ned by

B(X;Y ) =< rXN; Y > :

Thus

rXY = rXY +B(X;Y )N:

The components of B in the chart � are

B�� = (��B)(@�; @�)

= B(@��; @��)

= < r@��N; @�� >

= < r��(@��)N; @�� >

= < r@��
N; @�� >

= @�n � (��
�@��)

= b����
�

= ��
�b�� :(3)

The map � plays an important role because it allows us to extend any tensor A on

the base surface S to a tensor ��A on the whole bundle M .

We conclude the description of the geometry of M with its volume element dv.
It can be decomposed as follows

dv = dAt dt;

where dAt is the area element of St. Since St = �(S), we have

dAt = det(��) dA0:

Notice than in R3

det(��) = det(h+ tb)

= 1 + (tr b) t+ (det b) t2

= 1 +H t+K t2;

where H and K denote the mean curvature and the Gaussian curvature of the

surface S respectively.

2.2. The In�nitesimal Deformation of an Elastic Bundle. We shall assume

that the deformation �eld of the base surface S is given by

 = !N +W;

where W = W �@�� is an arbitrary vector �eld tangent to S and ! is an arbitrary

function on S. We extend ! to the whole bundle M by the normal 
ow, but we'll

continue to write ! instead of ��! = ! Æ �. In this section we will show that the

corresponding deformation vector �eld of the elastic bundle M is given by

(4) V = !N + ��W � t T (!) ;

where

T (!)(q1; q2; t) = T (!)(q1; q2) = h�� @�! @��:
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From the assumption that the deformations should preserve the bundle structure

it follows that �� has the following form:

�� = �� + t n� ;

where �� is a coordinate system for the deformed base space and n� is the normal
to it. We have �0 = �, n0 = n and

V =
d

d�

����
�=0

��

=  + t
d

d�

����
�=0

n� :(5)

On one hand

(6)

�
d

d�

����
�=0

n�

�
� n =

1

2

d

d�

����
�=0

(n� � n�) = 0 ;

while on the other hand�
d

d�

����
�=0

n�

�
� @�� =

d

d�

����
�=0

(n� � @���)� n �
d

d�

����
�=0

@���

= �n � @� 

= �@�( � n) +  � @�n

= �@�! +  � b�
�@��

= �@�! + b�
�W� :(7)

Using (6) and (7) in (5) we have

V = !N +W + t (�@�! + b�
�W�)h

�� @��

= !N + (h�
� + t b�

�)W� h
�� @��� t @�! h

�� @��

= !N + ��
�W� h

�� @��� t @�! h
�� @��

= !N + ��W � t T (!) ;

which is what was claimed in (4).

2.3. The Strain Tensor. Let g = ÆjM be the metric of the bundle M . The strain

tensor corresponding to the deformation vector �eld V is the symmetric tensor e
de�ned by

e =
1

2
LV g;

the Lie derivative of g in the direction of V . We now show that for any tangent

vector �eld X ,

(8) e(X;N) = 0:

Let g� = ��
�
(g) be the metric of the deformed bundle in the chart ��. Its components

are:

(g�)ij = @i�� � @j��:

The components of the strain tensor in the chart � are

eij =
1

2

d

d�

����
�=0

(@i�� � @j��)
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We have

e33 = @3� �
d

d�

����
�=0

@3��

= n �
d

d�

����
�=0

n�

= 0(9)

and

e3� =
1

2

d

d�

����
�=0

(n� � @��� + t n� � @�n�)

=
1

2
(�(@� � n)h

��@�� � @��+ n � @� )

= 0;(10)

which shows (8). We can now express the strain tensor in terms of the function !
and the vector �eld W :

e =
1

2
LV g

=
1

2
L
!N+��W�t T (!) g

=
1

2
L!N g + \r(��W )� t\rT (!):

Here Â stands for the symmetrization of A:

Â�� =
1

2
(A�� +A��):

For tangential �elds X , Y we have

L!N g(X;Y ) = !N < X; Y > � < L!NX;Y > � < X;L!NY > :

Since

L!NX = !NX �X(!N)

= !LNX � (X!)N

we have

< L!NX;Y >= ! < LNX;Y >

and

L!Ng(X;Y ) = !LNg(X;Y ):

Finally the strain tensor is given by

(11) e = !B + \r(��W )� t\rT (!):
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For future reference we obtain the expressions for the components of the tensors

rT (!) and r(��W ) in the chart �:

r�T
(!)

�
= rT (!)(@��; @��)

= ��
���

�
rT (!)(@��; @��)

= ��
���

� < r@��
T (!); @�� >

= ��
���

� < r@��
T (!); @�� >

= ��
���

�@�T
(!)

� @��

= ��
���

�
r�r�!;(12)

where r�r�! are the components of the Hessian of ! on S in the chart �, and

r(��W )�� = < r@��(��W ); @�� >

= ��
���

� < r@��
(��W ); @�� >

= ��
���

� < r@��
(W���

�@��); @�� >

= ��
���

�
r�(W

���� )

= ��
���

����(r�W
�) + ��

���
� (r���� )W

�(13)

Substituting (12) and (13) in (11) we obtain

(14) e�� = B�� ! � t ��
���

�
r�r�! + ��

�g
�

� (r�W� ) + ��
���

� (r���
�)W� :

2.4. The Plane Stress Assumption. In linear elasticity the stress tensor � is

related to the strain tensor e by the generalized Hooke's law:

�ij = Cijklekl

where

Cijkl = Cijkl(q1; q2; t)

denote the components of the elasticity 4-tensor C in the chart �. For a homoge-

neous and isotropic material the elasticity tensor is of the form

(15) Cijkl = � gijgkl + � gikgjl + � gilgjk :

In this case Hooke's law of linear elasticity takes the form

(16) �ij = � gmnemn gij + 2� eij = � tr (e) g
ij
+ 2� eij :

The strain energy corresponding to the strain e is de�ned by

E =
1

2

Z
M

C(e; e) dv =
1

2

Z
M

Cijkleijekl

It is now possible to derive a shell theory based solely on the Kirchho�-Love hy-

pothesis using the expression for the strain tensor (14). It turns out however that

a more realistic shell model is obtained using the assumption of plane stress:

(17) �33 = 0:

In linear elasticity this assumption contradicts the Kirchho�-Love hypothesis. We

follow a standard approach in modifying the Kirchho�-Love hypothesis (see [7]):

we no longer assume that

e33 = 0;

but we continue to assume that

e3� = 0:
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Let e denote the tangential part of the strain e. From (16) and (17) it follows that

0 = �33 = �gmnemn + 2�e33 = �g��e�� + (� + 2�)e33

and therefore

e33 = �
�

�+ 2�
g��e�� = �

�

�+ 2�
tre :

We use the last equation to simplify the expression for the strain energy:

C(e; e) = � (gmnemn)
2 + 2� gmngkj emjekn = �(tr e)2 + 2�tr (e2) :

Since

tr e = tr e+ e33 = (1�
�

�+ 2�
) tr e =

2�

�+ 2�
tr e

and

tr (e2) = tr (e2) + e233 = tr (e2) +
�2

(�+ 2�)2
(tr e)2

we obtain

C(e; e) = 4�
�2

(�+ 2�)2
(tr e)2 + 2�

�2

(�+ 2�)2
(tr e)2 + 2�tr (e2)

=
2��

�+ 2�
(tr e)2 + 2�tr (e2) :

2.5. Variation of the Strain Energy. In order to obtain the equilibrium equa-

tions we proceed to calculate the variation of the strain energy. Let ~! be an arbitrary

function and ~W an arbitrary vector �eld on S. The corresponding variation of

the energy is

ÆE = lim
�!0

E(! + �~!;W + � ~W )� E(!;W )

�
:

Let ~e = e( ~V ) be the strain corresponding to the deformation ~V . Since

e(V + ~V ) = e(V ) + e( ~V )

the variation of the strain energy is

ÆE =
��

�+ 2�

Z
M

tr e tr ~e dv + �

Z
M

tr (e ~e) dv

=

Z



Z
h0

�h0

�
��

�+ 2�
g��g
Æ + � g�
g�Æ

�
e��~e
Æ det(��) dt dA0

=

Z



Z
h0

�h0

���
Æe��~e
Æ dt dA0;

where we de�ne

���
Æ(q1; q2; t) =

�
��

�+ 2�
g��g
Æ + � g�
g�Æ

�
det(��) :

For the calculations that follow it is useful to note the following symmetries of �:

���
Æ = ���
Æ = ���Æ
 = �
Æ�� :
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We use (14) and integrate by parts omitting the boundary terms to rewrite the

energy variation as follows

ÆE =

Z



Z
h0

�h0

���
Æe��

�
B
Æ~! � t �


��Æ
�
r�r� ~! + �


�g
Æ

�
r�

~W� + �

��Æ

�
r���

� ~W�

�
dt dA0;

=

Z



Z
h0

�h0

�
���
Æe��B
Æ � tr�r�

�
���
Æe���


��Æ
�
��

~! dt dA0;

+

Z



Z
h0

�h0

�
���
Æe���


��Æ
�
r���

�
�r�

�
���
Æe���


�g
Æ

�
��

~W� dt dA0;

Collecting the terms we obtain the equations for the normal and the tangential

components of the force

f3 =

Z
h0

�h0

�
���
Æe��B
Æ � tr�r�

�
���
Æe���


��Æ
�
��
dt

f� =

Z
h0

�h0

�
���
Æe���


��Æ
�
r���

�
�r�

�
���
Æe���


�g
Æ

�
��
dt

Using (14) again we can �nally bring these equations into the following form

f3 = A! +r�r� (A
����

r�r�!)�r�r� (A
��

!)�A
��

r�r�!(18)

+ ��W� +�
��

r�W� �r�r� (	
���W�)�r�r�(	

����

r�W� )

f� = 
��W� +

���

r�W� �r�(

���

W� )�r�(

����

r�W� )(19)

+ �� ! �r�(�
��

!)�	���
r�r�! +r�(	

����

r�r�!)
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where the coeÆcients are de�ned as follows:

A =

Z
���
ÆB��B
Æ dt(20)

A
����

=

Z
���
Æ��

���
��


��Æ
� t2 dt(21)

A
��

=

Z
���
ÆB���


��Æ
� t dt(22)

�� =

Z
���
ÆB���


��Æ
�(r���

�) dt(23)

= A
��

r� b�
�

�
��

=

Z
���
ÆB���


��Æ
���

� dt(24)

	��� =

Z
���
Æ��

���
� (r���

�)�

��Æ

� t dt(25)

= A
����

r�b�
�

	
����

=

Z
���
Æ��

�g
�

��

��Æ

� t dt(26)


�� =

Z
���
Æ��

���
� (r���

�)�

��Æ

�(r���
�) dt(27)

= A
����

r�b�
�
r�b�

�



���

=

Z
���
Æ��

�g
�

��

��Æ

�(r���
�) dt(28)

= 	
����

r�b�
�



����

=

Z
���
Æ��

�g
�

��

�g

Æ

� dt(29)

2.6. The Plate Equation. For a 
at shell surface S the only non-zero coeÆcients

are A and 
 (	 is zero because it is an integral of an odd function on a symmetric

interval), and

����� =
��

�+ 2�
h��h�� + �h��h��

A
����

=
2

3
h30 �

����



����

= 2h0 �
����

The equations (18) { (19) reduce to

fnormal =
2

3
h30D�2!

ftangential = 2h0Drdiv W

where

D = 2�
�+ �

�+ 2�
:

The �rst equation is the classical equation of an elastic plate (see [8]). The second

equation does not appear in classical plate analysis where it is assumed that the

plate undergoes only vertical motion and the shearing forces are negligible.



MODELING ELASTIC SHELLS IMMERSED IN FLUID 13

3. The Immersed Boundary Method

The immersed boundary method of Peskin and McQueen is a general numerical

method for modeling an elastic material immersed in a viscous incompressible 
uid.

Typically the immersed material has been modeled as a collection of �bers. For

details and references to many applications see [13] and [12]. This section outlines

the immersed boundary method with the elastic material being modeled as a shell.

3.1. The Equations of the Model. For the description of the 
uid we adopt a

standard cartesian coordinate system on R3. The immersed material is described

in a di�erent curvilinear coordinate system. The equations can be partitioned into

three groups: the Navier Stokes equations of a viscous incompressible 
uid, the

equations describing the elastic material and the interaction equations. Accordingly

there are two distinct computational grids: one for the 
uid and the other for the

immersed material. The purpose of the interaction equations is to communicate

between these two grids.

We �rst turn to the Navier-Stokes equations. Let � and � denote the density

and the viscosity of the 
uid, and let u(x; t) and p(x; t) denote its velocity and

pressure, respectively. Then

�

�
@u

@t
+ u � ru

�
= �rp+ �r2u+F(30)

r � u = 0(31)

where F denotes the density of the body force acting on the 
uid. For example, if

the immersed material is modeled as a thin shell, then F is a singular vector �eld,

which is zero everywhere, except possibly on the surface representing the shell.

Let X(q; t) denote the position of the immersed material in R3. For a shell, q

takes values in a domain 
 � R2, and X(q; t) is a 1-parameter family of surfaces
indexed by t, i.e., X(q; t) is the middle surface of the shell at time t. Let f(q; t)
denote the force density that the immersed material applies on the 
uid. Then

F(x; t) =

Z
f(q; t)Æ(x �X(q; t)) dq;(32)

where Æ is the Dirac delta function on R3. This equation merely says that the 
uid

feels the force that the material exerts on it, but it is important in the numerical

method where it is one of the interaction equations mentioned above. The other

interaction equation is the no slip condition for a viscous 
uid:

@X

@t
= u(X(q; t); t)

=

Z
u(x; t)Æ(x �X(q; t)) dx(33)

We will now complete the description of the system by writing down the third

group of equations, the equations describing the shell. Let X0(q) denote the initial

position, which we take as our equilibrium reference con�guration, of the middle

surface of the shell, and let T� = T�(q) =
@

@q�
(� = 1; 2) be its tangent coordinate

vector �elds. The displacement from the stationary con�guration can be described

in terms of the function !(q; t) and the vector �eldW(q; t) de�ned by the following
equation:

X(q; t) �X0(q) = !(q; t)N(q) +W(q; t);
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where N = N(q) denotes the normal to the surface X0(q) and W = W�T� is

tangent toX0. We decompose the force f into its normal and tangential components

as well:

f = f3N+ f�T�

The components f i are related to ! and W � by the shell equations (18) { (19).

This completes the description of the 
uid-shell system.

3.2. The Numerical Method. Let �t denote the duration of a time step. It will
be convenient to denote the time step by the superscript. For example un(x) =

u(x; n�t): At the beginning of the n-th time step Xn and un are known. Each

time step proceeds as follows.

(1) Compute the force fn that the shell applies to the 
uid.

(2) Use (32) to compute the external force on the 
uid Fn.

(3) Compute the new 
uid velocity un+1 from the Navier Stokes equations.

(4) Use (33) to compute the new position Xn+1 of the immersed material.

The computation of the force in step 1 is explained in detail in the next section.

We shall now describe in detail the computations in steps 2 | 4, beginning with

the Navier-Stokes equations.

The 
uid equations are discretized on a rectangular lattice of mesh width h. We

will make use of the following di�erence operators which act on functions de�ned

on this lattice:

D+
i
�(x) =

�(x + hei)� �(x)

h
(34)

D�

i
�(x) =

�(x) � �(x � hei)

h
(35)

D0
i
�(x) =

�(x + hei)� �(x� hei)

2h
(36)

D0 = (D0
1 ; D

0
2; D

0
3)(37)

where i = 1; 2; 3, and e1, e2, e3 form an orthonormal basis of R3.

In step 3 we use the already known un and Fn to compute un+1 and pn+1 by
solving the following linear system of equations:

�

 
un+1 � un

�t
+

3X
k=1

un
k
D�

k
un

!
= �D0pn+1 + �

3X
k=1

D+
k
D�

k
un+1 +Fn(38)

D0
� un+1 = 0(39)

Here un
k
D�

k
stands for upwind di�erencing:

un
k
D�

k
=

�
un
k
D�

k
un
k
> 0

un
k
D+
k

un
k
< 0

Equations (38) { (39) are linear constant coeÆcient di�erence equations and, there-

fore, can be solved eÆciently with the use of the Fast Fourier Transform algorithm.

We now turn to the discretization of equations (32), (33). Let us assume, for

simplicity, that 
 � R2 is a rectangular domain over which all of the quantities

related to the shell are de�ned. We will assume that this domain is discretized with

mesh widths �q1, �q2 and the computational lattice for 
 is the set

Q = f(i1�q1; i2�q2) j i1 = 1 : : : n1; i2 = 1 : : : n2g :
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In step 2 the force Fn is computed using the following equation.

Fn(x) =
X
q2Q

fn(q)Æh(x�X
n(q))�q(40)

where �q = �q1�q2 and Æh is a smoothed approximation to the Dirac delta func-

tion on R3 described below.

Similarly, in step 4 updating the position of the immersed materialXn+1 is done

using the equation

Xn+1(q) = Xn(q) + �t
X
x

un+1(x)Æh(x�X
n(q))h3 ;(41)

where the summation is over the lattice x = (hi; hj; hk), where i, j and k are

integers.

The function Æh which is used in (40) and (41), is de�ned as follows:

Æh(x) = h�3�(
x1

h
)�(

x2

h
)�(

x3

h
) ;

where

�(r) =

8<
:

1
8
(3� 2jrj+

p
1 + 4jrj � 4r2) jrj � 1

1
2
� �(2� jrj) 1 � jrj � 2

0 2 � jrj

For an explanation of the construction of Æh see [13].

3.3. Computation of the Elastic Force. The force fn, that the shell applies to

the 
uid is computed by discretizing equations (18) { (19). We shall now describe

how to discretize these equations and how to compute various geometric quantities,

such as the Christo�el symbols, the second fundamental form, etc. These basic

geometric quantities, as well as the coeÆcients (20) { (29) that depend on them,

can be computed once in the initialization step of the algorithm and stored for

subsequent use.

A covariant derivative of a (p; q)-tensor A is de�ned by

(42) r�A
�1:::�q
�1:::�p

= @�A
�1:::�q
�1:::�p

+

qX
k=1

��k
��
A�1:::�:::�q
�1:::�p

�

pX
m=1

��
��m

A�1:::�q
�1:::�:::�p

;

where

��
��

=
1

2
g�� (g��;� + g��;� � g��;�)

are the Christo�el symbols, g�� = T� � T� is the metric of the surface X0, g
�� is

the inverse of g�� , and comma denotes partial di�erentiation (i.e., �;� = @��). To
simplify the discretization of the force equations we introduce a single di�erence

operator D� which uses center di�erencing in the interior of the domain and either

forward or backward di�erencing on the boundary:

D��(q) =

8<
:

D+
�
�(q) q� = �q�

D0
�
�(q) 2�q� � q� � (n� � 1)�q�

D�
�
�(q) q� = n��q�

Here the operators D+
�
, D0

�
and D�

�
are de�ned on the lattice Q analogously to the

de�nitions (34) { (37). We de�ne the discrete covariant derivative of a (p; q)-tensor
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A by

(43) ~D�A
�1:::�q
�1:::�p

= D�A
�1:::�q
�1:::�p

+

qX
k=1

��k
��
A�1:::�:::�q
�1:::�p

�

pX
m=1

��
��m

A�1:::�q
�1:::�:::�p

:

The following computations are carried out in the initialization stage of the

algorithm:

(1) Compute the tangent vector �elds T� = D�X0.

(2) Compute the unit normal vector �eld N = T1�T2

jT1�T2j
:

(3) Compute the metric g�� = T� �T� and its inverse g�� .
(4) Compute the second fundamental form: b�� = D�N �T� .

(5) Compute the Christo�el symbols:

��
��

=
1

2
g��(D�g�� +D�g�� �D�g��) :

(6) Compute the derivative of the second fundamental form:

~D�b�

 = D�b�


 + �

��
b�

�
� ��

��
b�


 :

(7) Compute the coeÆcients (20) { (29). In practice instead of evaluating the

integrals in these expressions it is easier to assume that the shell is suÆ-

ciently thin and to drop the terms involving high powers of the thickness.

The computation of the force during each time step proceeds as follows:

(1) Decompose the displacement into its tangential and normal components:

! = (Xn
�X0) �N

W� = (Xn
�X0) �T�

(2) Compute D�!, the components of d!, the 1-form dual to the gradient of

!.
(3) Compute ~D�D�!, the components of the hessian of !.

(4) Compute the components ~D�W� .

(5) Compute the normal and the tangential components of the force using the

following discretization of the equations (18) - (19):

f3 = A! + ~D�
~D� (A

���� ~D�D�!)� ~D�
~D� (A

��

!)�A
��

~D�D�!

+��W� +�
�� ~D�W� � ~D�

~D� (	
���W�)� ~D�

~D�(	
���� ~D�W� )(44)

f� = 
��W� +

��� ~D�W� � ~D�(


���

W� )� ~D�(

����

~D�W� )

+ �� ! � ~D�(�
��

!)�	��� ~D�D�! + ~D�(	
���� ~D�D�!)(45)

To complete the computation, we express the force in cartesian coordinates using

f = f3N+ f�T�:

4. An Application: Modeling a Shell Immersed in Fluid

In this chapter we present a model shell which is a prototype of a piece of the

basilar membrane of the cochlea. The immersed boundary method for shells was

implemented using the C programming language and numerical experiments were

carried out with this shell. We describe the model that was used, examine the

convergence of the algorithm in this case and discuss the results.
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Table 1. Parameters of the numerical test model

a = 0:1 cm length of the side of the 
uid cube

N = 32; 64; 128 size of the 
uid grid is N3

h = a

N

uid mesh width

� = 1:034 cm g�3 
uid density

� = 0:0197 g cm�1 sec�1 
uid viscosity

LBM = 3:5 cm length of the basilar membrane

L = 0:5 cm length of the model shell

w0 = 0:015 cm width of the basilar membrane at the base

w1 = 0:056 cm width of the basilar membrane at the apex

w(q1) = w0 +
q1

LBM
(w1 � w0) width of the model shell

h(q1) � 0:001(1:0+ 5:0 q1) cm thickness of the model shell

� = 1:8�=L
R = 1

30
cm

H = 0:01 cm

n1 = 1280 N

128
�rst dimension of the surface grid

n2 = 48 N

128
second dimension of the surface grid

�q1 =
L

n1�1
surface mesh width

�q2(q1) =
w(q1)

n2�1
surface mesh width

� = 26197503:0 g cm�1 sec�2 �rst Lam�e coeÆcient

� = 523950:0 g cm�1 sec�2 second Lam�e coeÆcient

�t = 0:5; 1:0; 2:0; 4:0� 10�8 sec time step

T0 = 2:0� 10�6 sec total simulation time

4.1. The Model Shell. We construct a shell similar to a piece of the basilar

membrane. Our shell will be approximately one seventh of the length of the basilar

membrane in the human cochlea and it will have more curvature. Introducing

more curvature allows us to pack a longer shell into a cube of 
uid of a given size.

Choosing a small 
uid cube enables us to achieve a better numerical resolution of

the 
uid.

The surface is a narrow helicoidal strip de�ned as follows. Consider the curve


(t) = (R cos(�t); R sin(�t); H�t)

where R, � and H are constants. They are speci�ed, along with the other param-

eters that we use below, in Table 1. The vector �eld

N(t) = (� cos(�t);� sin(�t); 0)

is a unit normal �eld along the curve 
. We de�ne the surface of the shell by the

following equation:

X(q1; q2) = 
(q1) +

�
q2 �

w(q1)

2

�
N(q1);

0 � q1 � L;
�w(q1)

2
� q2 �

w(q1)

2
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Figure 1. The thickness of the model shell.

The width w is chosen to grow linearly, similar to the width of the basilar membrane

(see Table 1). This surface is discretized on a grid of size n1 � n2 as follows:

Xk1;k2
= 
(k1�q1) +

�
k2�q2(k1�q1)�

w(k1�q1)

2

�
N(k1�q1)

k1 = 1; :::; n1; k2 = 1; :::; n2:

The compliance of an elastic shell is de�ned as the amount of volume displaced

per unit pressure di�erence across the shell. Von Bekesy found that the compli-

ance per unit length of the basilar membrane varies exponentially along the basilar

membrane as ecq1 , where c�1 = 0:7 cm (see [16]). To achieve this compliance in the

model shell we use the shell equations to estimate the required thickness. (Notice

that nothing changes in the derivation of the shell equations when the thickness h0
is assumed to be a function on the middle surface, rather than being a constant.

The thickness enters the equations only in the de�nition of the coeÆcients (20) {

(29)). We obtain an estimated thickness

h(q1) = 0:001

�
1 +

2

3
q1

� 5
3

10�
2
9
q1 cm,

which on the interval 0 � q1 � 0:5 is very close to a straight line (Figure 1). The

above choices of the width, the thickness and the L�ame coeÆcients (see Table 1)

yield an estimated compliance similar to the one measured by von Bekesy for the

basilar membrane.

4.2. The Numerical Experiments. The immersed boundary method for shells

was implemented using the C programming language. The program ran on the

Cray C-90 at the Pittsburgh Supercomputing Center as well as on Silicon Graphics

workstations.

The numerical experiments are set up as follows. The shell X is placed in a

periodic cube of 
uid, i.e., a three-dimensional torus. The length of this cube's side

is a = 0:1 cm, so it is much smaller than the cochlea, whose volume is approximately
1 cm3. The 
uid density �, and the 
uid viscosity �, are chosen equal to the
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corresponding parameters of the cochlear 
uid. The 
uid equations are discretized

on a cubic grid of N3 points and the grid size for the shell is chosen correspondingly

such that its mesh widths, �q1 and �q2, are approximately equal to half of the


uid mesh width h (Table 1). This choice is necessary to prevent the 
uid from

leaking through the shell. The edges of the shell's boundary are clamped to a �xed

location in space with two rows of springs along each edge.

At time 0 the system is perturbed with a force impulse in the 
uid and the simu-

lation is run for a �xed period of time T0 = 2:0�10�6 sec. The force impulse acting
at time 0 is represented by a constant singular vector �eld in the vertical direction

de�ned on the horizontal plane z = 0:1 cm (where z is the vertical coordinate)

with the force density of 4 � 10�7 g cm�1sec�2. Since the force source is broadly

distributed through a horizontal plane within the 
uid, wave propagation within

the basilar membrane can only arise as a consequence of its material properties and

cannot be the result of the location of the force source.

Immersed boundary computations typically require large scale computing re-

sources. Because of time and storage limitations, it is not possible to conduct

an extensive empirical study of the algorithm's convergence. At present it is not

practical to implement the method with a 
uid grid of more than 1283 points.

The experiment has been repeated with N = 32; 64 and 128 and time steps �t =
0:5; 1:0; 2:0 and 4:0 � 10�8 sec. Numerical stability condition forces a choice of

such small time steps. On the other hand, reducing the time step further may result

in a signi�cant machine precision error.

4.3. Convergence of the Algorithm. Let X1(t) and X2(t) denote the position
of the shell at time t obtained in two di�erent numerical experiments. To measure

the relative di�erence at time t we calculate

(46) E(t) =
jX1(t)�X2(t)jp

jX1(t)�X1(0)jp

where the norms are Lp-norms with p = 1; 2 and 1.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Relative error as a function of time step

time step

Top graph:  relative max−norm error

Middle graph:  relative L2 norm error

Bottom graph: relative L1−norm error

Figure 2. The relative di�erence between X1;128 and X2;128.
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For any two experiments the function E has been found to decrease initially very

sharply, stabilizing in the second half of the time interval. Two typical graphs are

shown in Figure 2 and Figure 3. Therefore, we will measure the di�erence between

two computed solutions on the time interval [T0
2
; T0] using the following space-time

norms:

kX1 �X2kp =
X

t2[0:5 T0; T0]

jX1(t)�X2(t)jp

where the summation is taken over the set of 25 time values common to all of the

tests performed and the Lp-norms are computed on the \common" grid of 257�12

points.
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Relative error as a function of time step
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Top graph:  relative max−norm error

Middle graph:  relative L2 norm error

Bottom graph: relative L1−norm error

Figure 3. The relative di�erence between X0:5;128 and X0:5;64.

The computations were performed with double precision 
oating point on a

Silicon Graphics computer. The results of the measurements are summarized in

Table 2 and Table 3. These results indicate that the algorithm converges when the

time step �t is linearly proportional to the mesh width h and both tend to zero.

LetX
Æ;N

denote the position of the shell computed with �t = Æ�10�8 and N = N .

Table 2. Norm comparison between di�erent numerical tests.

Tests compared L1-norm L2-norm L1-norm

1.0/128 { 2.0/64 9:6290� 10�08 1:8547� 10�09 9:7749� 10�11

2.0/64 { 4.0/32 2:3984� 10�07 4:6353� 10�09 1:8326� 10�10

0.5/128 { 1.0/64 9:2989� 10�08 1:8086� 10�09 9:5158� 10�11

1.0/64 { 2.0/32 2:4082� 10�07 4:7011� 10�09 1:9287� 10�10

Using the data in Table 2 we have two estimates of the order of convergence of the

algorithm:

r1 = log2

�
kX1;128 �X2;64kp

kX2;64 �X4;32kp

�
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Table 3. Convergence rate estimates.

L1-norm L2-norm L1-norm

r1 1.3729 1.3781 1.0192

r2 1.3166 1.3215 0.9068

and

r2 = log2

�
kX0:5;128 �X1;64kp

kX1;64 �X2;32kp

�
The values of r1 and r2 are given in Table 3. As the time step becomes smaller,

the machine precision error becomes more signi�cant leading to a slower rate of

convergence. This is apparently the reason that we have r2 < r1.

4.4. The Traveling Wave. The test model described above was run with N =

128 and time step �t = 1:0 � 10�8 seconds for a total of more than 2400 time

steps. Although this model is still far from a realistic model of the cochlea, several

qualitative features, characteristic of the cochlear wave mechanics, were already

observed in this experiment.

In the experiment a traveling wave is produced in response to the force impulse

in the 
uid. The wave propagates in the direction of increasing compliance within

the elastic shell. This agrees with von B�ek�esy's observation that the traveling wave

in the cochlea always propagates from the base to the apex (see [16]). Snapshots

of this wave are shown in Figure 4. The ten snapshots were taken every 200 time

steps beginning with time step 600. The �rst �ve appear in the �rst column, the

rest in the second. Since the displacements of the shell are too small to be seen

with the naked eye, they are represented in the pictures on a gray scale. Black

color indicates the maximal possible displacement down, and white, the maximal

displacement up (the scale is symmetric with respect to zero). The initial force

impulse has pushed the 
uid down and, as can be seen from the �rst snapshot,

after 600 time steps the shell is displaced downwards. In the following snapshots

we can see that the sti�er part of the shell near the base is bouncing back and a

wave starts propagating towards the apex.

Conclusion and Further Research

This paper describes an extension of the immersed boundary method to elastic

shells in a viscous incompressible 
uid. The method was developed as a part of a

project to construct a three-dimensional computational model of the cochlea. It

is based on shell equations derived using techniques of di�erential geometry. The

resulting method is a practical method which has been implemented and tested on

a prototype of a piece of the basilar membrane. We have examined the convergence

of the algorithm in this case. Numerical experiments indicate that the algorithm

has the �rst order convergence rate when the time step is chosen to be linearly

proportional to the 
uid mesh width.

The numerical experiments have shown a traveling wave propagating in the test

model shell in the direction of increasingmaterial compliance in response to external

impulsive excitation of the 
uid. This reproduces the so-called \travelling wave
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Figure 4. The traveling wave in the test shell.

paradox" observed in the cochlea: the traveling wave always travels from the base

to the apex of the cochlea independently of the location of the impulse source.

The numerical method described here was subsequently used in a construction

of a complete three-dimensional computational model of the macro-mechanics of

the cochlea. Additional diÆculties in the construction of this model are caused

by the large scale of the immersed boundary computations required, and by the

presence in the 
uid of several di�erent elastic materials in addition to the basilar

membrane. The size of a human cochlea is on the order of 1 cm � 1 cm � 1 cm,

while the basilar membrane is about 3.6 cm long and is very narrow (150|560
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�m). Therefore, larger 
uid grid is necessary in the full cochlea simulation in order
to resolve the 100 �m scale corresponding to the width of the basilar membrane.

Immersed boundary computations require large scale computing resources: a 
uid

grid of 256�256�128 points needed for the full cochlea model requires a signi�cant

amount of computer memory. The CFL condition and the stability conditions

imposed by the sti�ness forces of the immersed boundaries force a choice of a very

small time step (approximately 50 nano-seconds) when the 
uid mesh width is

small. The convergence study carried out in this paper indicates that decreasing

the 
uid mesh width by a factor of two necessitates a corresponding decrease in the

time step by approximately a factor of two. This has indeed been further veri�ed

in the construction of the complete cochlea model.

The construction of the cochlea model has been achieved in collaboration with

Julian Bunn on Hewlett-Packard computers at the Center for Advanced Compu-

tational Research at Caltech. The results of this work will be described in future

publications.
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