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Abstract

The human cochlea is a remarkable device, able to discern extremely small ampli-

tude sound pressure waves, and discriminate between very close frequencies. Sim-

ulation of the cochlea is computationally challenging due to its complex geometry,

intricate construction and small physical size. We have developed, and are con-

tinuing to re�ne, a detailed three-dimensional computational model based on an

accurate cochlear geometry obtained from physical measurements. In the model,

the immersed boundary method is used to calculate the 
uid-structure interactions

produced in response to incoming sound waves. The model includes a detailed and

realistic description of the various elastic structures present.

In this paper, we describe the computational model and its performance on the

latest generation of shared memory servers from Hewlett Packard. Using compiler

generated threads and OpenMP directives, we have achieved a high degree of par-

allelism in the executable, which has made possible several large scale numerical

simulation experiments that study the interesting features of the cochlear system.

We show several results from these simulations, reproducing some of the basic known

characteristics of cochlear mechanics.
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1 Introduction

The cochlea is the part of the inner ear where acoustic signals are transformed

into neural pulses which are then signaled to the brain. It is a small organ,

the size of a child's marble, which is a miracle of nature's engineering. It is

sensitive to signals ranging over more than seven orders of magnitude, from

a whisper to an explosion. We can hear sounds ranging in frequency from

approximately 10 Hz to about 20 kHz, and distinguish between tones whose

frequencies di�er by less than a percent. Trained musicians, for example, are

capable of di�erentiating between pure tones of 1000 Hz and 1001 Hz.

These remarkable signal processing capabilities are achieved by a compli-

cated mechanism involving both interaction of elastic material components

immersed in 
uid and electro-chemical processes. After decades of research a

fascinating picture of the cochlear mechanics has emerged, but the precise na-

ture of the mechanisms responsible for the extreme sensitivity, sharp frequency

selectivity and the wide dynamic range of the cochlea remains unknown. The

goal of our project is to build computational modeling tools that we hope

will assist in the understanding of the cochlea works. We have constructed a

comprehensive three-dimensional computational model of the 
uid-structure

interactions of the cochlea using the immersed boundary method. This is the

�rst model that incorporates the curved cochlear anatomy based on real physi-

cal measurements, uses the non-linear Navier-Stokes equations of viscous 
uid

dynamics and includes a detailed and realistic description of the various elastic

structures present. For example, the helicoidal basilar membrane is modeled

as an elastic shell using partial di�erential equations.

We have developed a suite of software codes to support our studies of the

cochlea using the immersed boundary method. These include codes for the

generation of simulation input models (implemented in C++), the main im-

mersed boundary numerical solver, and those for the analysis and visualization

of results (implemented in Java and C++). The main workhorse in this suite

is the general purpose immersed boundary code, which is written in C and

requires extensive computing resources (CPU power, memory, and available

disk space for storage of the results �les).

Our present work builds on the �rst author's implementation of the immersed

boundary method for elastic shells [12]. In this paper we outline the con-

struction of the cochlea model and present preliminary results of several large

scale numerical experiments. These experiments reproduce some of the ba-

sic features of cochlear mechanics and demonstrate the promise of large scale

computational modeling approach to answering important questions about

nature's miraculous engineering design of the cochlea.
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The rest of the paper is organized as follows. Section 2 is a short introduction

to cochlear mechanics, including a brief survey of some of the previous work on

cochlear modeling. For a comprehensive up to date introduction to the subject

see Geisler's excellent book [11]. Section 3 describes the general methodology of

the immersed boundary method. We write down the 
uid-structure interaction

equations and outline the general �rst-order numerical method to solve these

equations. The method has been extensively tested for di�erent models of the

elastic immersed boundary. For more detailed presentations see [31], [30] and

[12]. We also discuss brie
y the implementation of the immersed boundary

algorithm and its optimization. Section 4 describes the construction of the

cochlea model. In section 5 we present results of several numerical simulations.

Our cochlea model is a work in progress and we conclude with an outline of

future directions for this project.

2 The Cochlea

2.1 Cochlear Mechanics

The cochlea is a small snail-shell-like cavity in the temporal bone, which has

two openings, the oval window and the round window. The cavity is �lled

with 
uid and is sealed by two elastic membranes that cover the windows.

The spiral canal of the cochlea is divided lengthwise into two passages by

the cochlear partition consisting of the bony shelf and the so-called basilar

membrane. These passages are the scala vestibuli and scala tympani, and

they connect with each other at the apex, called the helicotrema. External

sounds set the ear drum in motion, which is conveyed to the inner ear by the

ossicles, three small bones of the middle ear, the malleus, incus and stapes.

The ossicles function as an impedance matching device, focusing the energy

of the ear drum on the oval window of the cochlea. The piston-like motion

of the stapes against the oval window displaces the 
uid of the cochlea, so

generating traveling waves that propagate along the basilar membrane.

Much of what we know about the waves in the cochlea was discovered in

the 1940s by Georg von B�ek�esy [45], who carried out experiments in cochleae

extracted from human cadavers. Von B�ek�esy studied the cochlea as a passive

mechanical �lter that utilizes a system of elastic components immersed in

a 
uid for analysis of incoming sounds. He observed that a pure tone input

generates a traveling wave propagating along the basilar membrane. The wave

amplitude rises gradually, reaching a peak at a speci�c location along the

membrane, after which it decays rapidly. The peak location depends on the

frequency of the input tone, with high frequencies peaking close to the stapes,

and the lower frequencies further towards the apex. This \place principle"
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is a crucial mechanism of frequency analysis in the cochlea. Resting on the

basilar membrane is the microscopic organ of Corti, a complicated structure

containing sensory receptors called hair cells. The hair cells detect 
uid motion

and provide input to the a�erent nerve �bers that send action potentials to

the brain. Thus, a pure tone input activates only a speci�c group of hair

cells depending on its frequency, with the characteristic frequency locations

monotonically decreasing along the basilar membrane from the stapes to the

helicotrema.

Von B�ek�esy found that the basilar membrane's elastic properties play an im-

portant role in the wave mechanics of the cochlea. Despite its name, the basilar

membrane is in fact an elastic shell whose compliance increases exponentially

with length. (Unlike an elastic membrane, an elastic shell is not under inner

tension, i.e. when it is cut the edges do not pull apart. The compliance of an

elastic shell is de�ned as the amount of volume displaced per unit pressure

di�erence across the surface of the shell.) Von B�ek�esy's experiments further

revealed that the wave propagates in the basilar membrane in the direction of

increasing compliance regardless of the location of the source of excitation in

the 
uid. This phenomenon came to be known as \the traveling wave paradox"

and it is very important because a signi�cant part of our hearing depends on

bone conduction, where the input to the cochlea is coming not through the

stapes, but through the vibration of the bony walls. Bone conduction is easily

demonstrated by placing a vibrating tuning fork in contact with the forehead,

resulting in the subject hearing the tone of the fork frequency.

Mathematically, the macro-mechanical system of the cochlea can be described

by the Navier-Stokes equations of incompressible 
uid mechanics coupled with

equations modeling the elastic properties of the basilar membrane and the

membranes of the oval and the round windows. The mathematical problem

of solving this system of partial di�erential equations on a three-dimensional

domain with intricate curved geometry is very diÆcult. Since the displace-

ments of the basilar membrane are extremely small (on a nanometer scale),

the system operates in a linear regime. Analysis shows that the waves in the

cochlea resemble shallow water waves [24].

While the macro-mechanics of the cochlea break up the incoming sound into

its frequency components, it was suggested as early as 1948 that a passive me-

chanical system alone cannot explain the extreme sensitivity and frequency

selectivity of the cochlea; some kind of ampli�cation is necessary [13]. In-

deed, analysis of cochlear macro-mechanics indicates that the traveling wave

focusing is not suÆciently sharp, with some estimates suggesting that, at its

threshold, human hearing is about a hundred times more sensitive than what

would be expected from a passive macro-mechanical �lter of the cochlea.

In 1967 Johnstone and Boyle [16] utilized the M�ossbauer e�ect to carry out
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measurements of the basilar membrane vibrations in vivo, with more than

100-fold improvement in resolution over von B�ek�esy's measurements. These

measurements revealed that in the live cochlea the peak of the wave envelope

is, in fact, well localized [36]. Since then the �ne tuning of the cochlea has

been con�rmed experimentally in many studies, e.g. [37,39,18]. This led to

attempts to understand the mechanical and electro-chemical processes at the

level of the hair cells and to a renewed interest in the conjecture that the

cochlea contains an energy source and acts as a mechanical ampli�er.

Further indirect support for the active ampli�cation hypothesis was found

with the discovery of the existence of otoacoustic emissions [20,17]. Otoacous-

tic emissions may be recorded during or after acoustical stimulation using

a sensitive microphone placed close to the ear drum. Emissions can also be

detected when electric current is applied to the cochlea [27]. Spontaneous otoa-

coustic emissions (SOAEs) occur in humans and other species. In the severe

cases SOAEs are the cause of objective tinnitus, a common complaint of pa-

tients with \ringing ears". Experiments show that a SOAE can be suppressed

when a stimulus tone is presented at a nearby frequency. An isosuppression

tuning curve is a curve obtained by measuring the otoacoustic emission while

varying the amplitude and the frequency of the stimulus. In both mammalian

and nonmammalian cochleae SOAEs and the process responsible for sharp

frequency selectivity display similar characteristics. Measurements show that

the isosuppression tuning curve closely resembles an ordinary tuning curve [8],

which measures responsiveness to acoustical stimulus, leading to the conjec-

ture that the cochlear ampli�er is also the source of the SOAEs.

Presently, understanding the nature of the active mechanism in the cochlea is

the main open problem of hearing research. The live cochlea is a remarkable

highly non-linear �lter, but its function crucially depends on the underlying

linear �lter of the passive cochlear mechanics, which is still not suÆciently well

understood. Basic questions about the role of geometry and the elastic prop-

erties of the basilar membrane in cochlear mechanics remain open. Answering

such questions is important not only to our understanding of the cochlea, but

also in solving important engineering problems, such as a cochlear transducer

design (see [34]).

2.2 Cochlear Models

Extensive research in cochlear modeling has been carried out over the years.

Because of mathematical diÆculty mostly simpli�ed one or two-dimensional

models that sought to incorporate some aspects of cochlear mechanics have

been proposed.
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Early one-dimensional \transmission line" model of the cochlea [48], [33], [10]

has assumed that the 
uid pressure is constant over a cross section of the

cochlear channel. The 
uid is assumed to be incompressible and inviscid, and

the basilar membrane is modelled as a damped, forced harmonic oscillator with

no elastic coupling along its length. Qualitatively, this model has been shown

to capture the basic features of the basilar membrane response. Quantitatively,

however, it yields large discrepancies with measurement results [46].

Two-dimensional models by Ranke [35] and Zwislocki [47] make similar as-

sumptions on the cochlear 
uid and the basilar membrane. Ranke's model

uses a deep water approximation, while Zwislocki used the shallow water the-

ory in his model. These models were further developed in [40], [23], [4], [3] and

other works. The most rigorous analysis of a two-dimensional model with 
uid

viscosity was carried out by Leveque, Peskin and Lax in [24]. Their cochlea is

represented by a plane (i.e. a strip of in�nite length and in�nite depth) and

the basilar membrane, by an in�nite line dividing the plane into two halves.

The linearized equations are reduced to a functional equation by applying the

Fourier transform in the direction parallel to the basilar membrane and then

solving the resulting ordinary di�erential equations in the normal direction.

The functional equation derived in this way is solved analytically, and the so-

lution is evaluated both numerically and also asymptotically (by the method

of stationary phase). This analysis reveals that the waves in the cochlea re-

semble shallow water waves, i.e. ripples on the surface of a pond. A distinctive

feature of this paper is the (then speculative) consideration of negative basilar

membrane friction, i.e., of an ampli�cation mechanism operating within the

cochlea.

Other two-dimensional models incorporate more sophisticated representations

of the basilar membrane, using, for example, elastic beam and plate theory ([6],

[38], [19], [2], [41], [15], [7], [14]). Three-dimensional models were considered

by Steel and Taber [42] and de Boer [9], who used asymptotic methods and

computations, obtaining a slightly improved �t of the experimental data. Their

experience seems to indicate that geometry may play a signi�cant role in the

problem. In particular, the e�ect of the spiral coiling of the cochlea on the

wave dynamics remains unresolved. It has been considered by several authors

(see [44], [25], [43], [26]).

With the development of more powerful computers it became possible to con-

struct more detailed computational models of the cochlea. A two-dimensional

computational model of the cochlea was constructed by Beyer [5]. In this

model the cochlea is a 
at rectangular strip divided into two equal halves

by a line which represents the basilar membrane. The 
uid is modelled by

the full Navier-Stokes equations with viscosity terms, but elastic coupling

along the basilar membrane is not incorporated. Beyer has used a modi�ca-

tion of Peskin's immersed boundary method, originally developed for modeling
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the 
uid dynamics of the heart [29]. Several three-dimensional computational

models have been reported, such as Kolston's model [21,22], intended to sim-

ulate the micro-mechanics of the cochlear partition in the linear regime (i.e.

near the threshold of hearing), and Parthasarati, Grosh and Nuttal's [28] hy-

brid analytical-computational model using WKB approximations and �nite-

element methods.

3 The Immersed Boundary Method

The primary method used in our construction of the cochlea model is the

immersed boundary method of Peskin and McQueen. It is a general numerical

method for modeling an elastic material immersed in a viscous incompressible


uid. It has proved to be particularly useful for computer simulation of various

bio
uid dynamic systems. In this section we outline the general framework of

the immersed boundary method. So far most applications of the method have

treated the elastic (and possibly active) biological tissue as a collection of

elastic �bers immersed in a viscous incompressible 
uid. For details of this

formulation of the method together with references to many applications see

[31] and [30]. The immersed boundary framework is suitable for modeling

not only elastic �bers, but also di�erent elastic materials having complicated

structure. The cochlea model makes an essential use of the immersed boundary

method for shells, as developed in [12]. The main advantage of the immersed

boundary method is its conceptual simplicity: the viscous incompressible 
uid

is described by the Navier-Stokes equations, the geometry of the model mirrors

the real-life curved three-dimensional cochlear geometry and models for elastic

and active material components can be naturally integrated.

3.1 The Equations of the Model

The immersed boundary method is based on a Lagrangean formulation of

the 
uid-immersed material system. The 
uid is described in the standard

cartesian coordinates on R3, while the immersed material is described in a

di�erent curvilinear coordinate system. Let � and � denote the density and

the viscosity of the 
uid, and let u(x; t) and p(x; t) denote its velocity and

pressure, respectively. The Navier-Stokes equations of a viscous incompressible


uid are:

�

 
@u

@t
+ u � ru

!
= �rp+ �r

2u + F (1)

r � u=0; (2)
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where F denotes the density of the body force acting on the 
uid. For example,

if the immersed material is modeled as a thin shell, then F is a singular vector

�eld, which is zero everywhere, except possibly on the surface representing

the shell. The numerical method uses a discretization of the Navier-Stokes

equations (1) and (2) on a periodic rectangular grid.

Let X(q; t) denote the position of the immersed material in R3. For a shell,

q takes values in a domain 
 � R2, and X(q; t) is a 1-parameter family of

surfaces indexed by t, i.e., X(q; t) is the middle surface of the shell at time t.

Let f(q; t) denote the force density that the immersed material applies on the


uid. Then

F(x; t) =

Z
f(q; t)Æ(x�X(q; t)) dq; (3)

where Æ is the Dirac delta function on R3. This equation merely says that the


uid feels the force that the immersed material exerts on it, but it is important

in the numerical method, where it is one of the equations determining 
uid-

material interaction. The other interaction equation is the no-slip condition

for a viscous 
uid:

@X

@t
=u(X(q; t); t)

=

Z
u(x; t)Æ(x�X(q; t)) dx: (4)

The system has to be completed by specifying the force f(q; t) of the im-

mersed material. In a complicated system such as the cochlea the immersed

material consists of many di�erent components: membranes, bony walls, an

elastic shell representing the basilar membrane, and various cells of the organ

of Corti, including outer hair cells, which may actively generate forces. For each

such component it is necessary to specify its own computation grid and an

algorithm to compute its force f . It is in the speci�cation of these forces that

models for various system components integrate into the macro-mechanical

model.

3.2 The Numerical Method

We describe here a �rst-order immersed boundary numerical scheme, which

is the easiest to implement and has the important advantage of modularity:

incorporating various models of immersed elastic material is straightforward.

Let �t denote the duration of a time step. It will be convenient to denote the

time step by the superscript. For example un(x) = u(x; n�t): At the beginning
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of the n-th time stepXn and un are known. Each time step proceeds as follows.

(1) Compute the force fn that the immersed boundary applies to the 
uid.

For simple materials, such as �bers, this is a straightforward computation

(see [31]). For a detailed description of a shell immersed boundary force

computation see [12].

(2) Use (3) to compute the external force on the 
uid Fn.

(3) Compute the new 
uid velocity un+1 from the Navier Stokes equations.

(4) Use (4) to compute the new position Xn+1 of the immersed material.

We shall now describe in detail the computations in steps 2 | 4, beginning

with the Navier-Stokes equations.

The 
uid equations are discretized on a rectangular lattice of mesh width h.

We will make use of the following di�erence operators which act on functions

de�ned on this lattice:

D
+

i
�(x)=

�(x+ hei)� �(x)

h
(5)

D
�

i
�(x)=

�(x)� �(x� hei)

h
(6)

D
0

i
�(x)=

�(x+ hei)� �(x� hei)

2h
(7)

D0=(D0

1
; D

0

2
; D

0

3
) (8)

where i = 1; 2; 3, and e1, e2, e3 form an orthonormal basis of R3.

In step 3 we use the already known un and Fn to compute un+1 and p
n+1 by

solving the following linear system of equations:

�

 
un+1

� un

�t
+

3X
k=1

u
n

k
D
�

k
un

!
= �D0

p
n+1 + �

3X
k=1

D
+

k
D
�

k
un+1 + Fn (9)

D0
� un+1=0 (10)

Here un
k
D
�

k
stands for upwind di�erencing:

u
n

k
D
�

k
=

8><
>:
u
n

k
D
�

k
u
n

k
> 0

u
n

k
D

+

k
u
n

k
< 0

Equations (9) and (10) are linear constant coeÆcient di�erence equations and,

therefore, can be solved eÆciently with the use of the Fast Fourier Transform

algorithm.

We now turn to the discretization of equations (3), (4). Let us assume, for
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simplicity, that 
 � R2 is a rectangular domain over which all of the quantities

related to the shell are de�ned. We will assume that this domain is discretized

with mesh widths �q1, �q2 and the computational lattice for 
 is the set

Q = f(i1�q1; i2�q2) j i1 = 1 : : : n1; i2 = 1 : : : n2g :

In step 2 the force Fn is computed using the following equation.

Fn(x) =
X
q2Q

fn(q)Æh(x�Xn(q))�q (11)

where �q = �q1�q2 and Æh is a smoothed approximation to the Dirac delta

function on R3 described below.

Similarly, in step 4 updating the position of the immersed material Xn+1 is

done using the equation

Xn+1(q) = Xn(q) + �t

X
x

un+1(x)Æh(x�Xn(q))h3 ; (12)

where the summation is over the lattice x = (hi; hj; hk), where i, j and k are

integers.

The function Æh which is used in (11) and (12), is de�ned as follows:

Æh(x) = h
�3
�(

x1

h
)�(

x2

h
)�(

x3

h
) ;

where

�(r) =

8>>>>><
>>>>>:

1

8
(3� 2jrj+

q
1 + 4jrj � 4r2) jrj � 1

1

2
� �(2� jrj) 1 � jrj � 2

0 2 � jrj

For an explanation of the construction of Æh see [31].

3.3 Implementation and Optimization of Immersed Boundary Computations

Our main simulation code implements the �rst-order immersed boundary al-

gorithm described above. It is written in C and has been optimized to run on

several platforms: the Silicon Graphics Origin 2000 parallel architecture, the

Cray T90 vector-parallel machine and the HP V-class and Superdome systems.

There is also a version for a PC running Windows, suitable for testing small

models. The simulation code takes as input a set of �les which contain the
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description of the geometry and the material properties of the system. These

�les are created before the start of the simulation by the model generation

software. Once the model has been read, the simulation enters a computation

loop over the required number of time steps, generating output �les containing

information about the state of the simulated model.

The complexity of an immersed boundary computation is determined by the

sizes of the 
uid and immersed boundary grids and by the size of the time

step. To prevent 
uid leakage the mesh width of the material grids is taken to

equal approximately half the 
uid grid mesh width. (For more on volume con-

servation in immersed boundary calculations see [32]). The computation of the

material forces is relatively inexpensive in time. The bulk of the computation

is related to the 
uid equations and to the 
uid-immersed material interac-

tion. The solution of the discretized 
uid equations (9), (10) uses the Fast

Fourier Transform algorithm. The other two demanding parts of each time

step required development of a specialized algorithm that carefully partitions

the 
uid and the material grids into portions that are distributed amongst

the available processors. This is done in such a way as to ensure that no

two processors operate simultaneously on the same portion of the data. Nu-

merical consistency conditions require reducing the time step when the space

mesh width is decreased. A convergence study of the algorithm shows that

the change in the time step is proportional to the change in mesh width. For

example, decreasing the mesh width by a factor of 2 necessitates decreasing

the time step by approximately a factor of 2 as well. Thus rescaling a model

with a 1283-point 
uid grid to a 2563-point model requires approximately 8

times as much memory and 16 times as much CPU time [12].

For large scale simulations, such as that of the full cochlea model, extensive

optimization of the immersed boundary code was necessary so as to reduce

the elapsed time to a length that allowed useful experiments to be completed

in a manageble time. The code is instrumented with calls to system timing

routines, this information proving invaluable during porting and tuning of

the software on di�erent architectures. The largest and most recent immersed

boundary numerical experiments have been carried out on the 32 processor HP

Superdome installed at the Center for Advanced Computing Research (CACR)

at Caltech. The HP 9000 Superdome at CACR contains 32 RISC processors

arranged in a cell-based hierarchical crossbar architecture, with each cell con-

sisting of 4 cpus with 8Gb of memory and an I/O sub-system. This architecture

supports the shared memory programming model and the code eÆciency was

achieved primarily through the use of OpenMP parallelization directives. We

used several software tools such as the HP CXperf and the KAI Guideview

to examine the parallel eÆciency of every section in the code and to identify

data cache and TLB misses. Figure 1 shows the excellent scaling behavior of

the simulation as a function of the number of allocated processors. Following

this work, the \wall-clock" time per step of the simulation is approximately
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1.3 seconds when running on all processors of the HP Superdome.

Fig. 1. Execution wall-clock time per time step vs. number of processors.

4 The Cochlea Model

The size of the human cochlea is about 1 cm � 1 cm � 1 cm, while the human

basilar membrane is approximately 3.5 cm long, is very thin and very narrow:

its width grows from about 150�m near the stapes to approximately 560�m

near the helicotrema. Since the mesh width of the basilar membrane should

approximately equal half the mesh width of the 
uid grid (see section 3), a


uid grid of at least 2563 points is necessary to adequately resolve the width

of the basilar membrane. The geometric model of the cochlear anatomy is

based on measurements that include the position of the center line of the

basilar membrane, its width and the cross-sectional area of the scalae. There

are six surfaces in this model: the basilar membrane, the spiral bony shelf,

the tubular walls of the scala vestibuli and the scala tympani and the semi-

elliptical walls sealing the cochlear canal and containing the oval and the

round window membranes (see Figure 2). The basilar membrane is modeled

as an elastic shell following the prototype tested earlier (see [12]). The oval

window and the round window membranes are are also modeled as elastic

shells, but unlike in the case of the basilar membrane, the compliance of each

of these shells is constant throughout the shell. The windows are geometrically

identical: each is modeled by a rectangular grid, all of whose points outside a

given circle are �xed. Hence each such grid represents a circular plate within
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Fig. 2. A rendering of the geometric model of the cochlea with several parts of

the outer shell removed in order to expose the cochlear partition consisting of the

narrow basilar membrane and the bony shelf. The round window is located directly

below the oval window and in this picture it is partially obscured by the cochlear

partition.

a rectangular piece of a bone.

The model building programs generate the approximate cochlear geometry,

the material properties of various surfaces and the set of parameters describ-

ing the desired simulation tests. The six surfaces of immersed material in the

cochlea model are partitioned into 31 computational grids comprising approx-

imately 750,000 points in total. In addition to the basilar membrane and the

windows' grids described above there are 28 grids modeling the bony surfaces.

The partitioning of the bony surfaces into 28 rectangular grids was neces-

sary to minimize the total number of material points while maintaining an

approximately uniform distance between these points.

The passive cochlea is essentially a linear mechanical �lter (see section 2)

and the displacements occuring within the cochlea are too small to be seen

without magni�cation. In our numerical experiments the displacements of the

basilar membrane are measured on a nano-meter scale. The immersed bound-

ary method is particularly suitable for such a simulation since it possesses a

subgrid resolution (the material grid mesh width of our cochlea model is about
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20�m). Our numerical algorithm however uses the fully non-linear system of

Navier-Stokes equations rather than the linearized system because the com-

putational cost of solving the linearized equations in the immersed boundary

method would be essentially the same as the cost of solving the fully non-linear

system.

The codes which are used to analyse and visualise the cochlear geometry and

the simulated dynamics include a C++/OpenGL tool that runs on SGI and

a Java/Java3D tool that runs on most platforms. These tools take as input

the vertex coordinates for all computational grids in the cochlea model from

the result �les for each time step in the simulation. The tools generate a full

3D rendering of the model geometry. Since the displacements occuring within

the cochlea are very small they are color-coded to reveal the dynamics of

the system. Our graphics tools also enable us to magnify the displacements to

make them visible on the screen. An essential insight into the basilar membrane

dynamics is provided by the plot of the normal displacement of its center line

(see Figures 4, 5). Other Java tools display various important characteristics of

the system dynamics, such as the response of individual points on the basilar

membrane as a function of time. All of the graphics tools have built-in facilities

for generating animation.

The construction of the full cochlea model has been undertaken in stages

with the individual components tested separately prior to the model assembly.

The basilar membrane model is described in detail in [12]. The oval window

functions as the input window of the cochlea. We simulate the pressure of the

stapes against it by prescribing an external force vector �eld on the window

grid. This force is orthogonal to the surface of the window and for a pure tone

input its magnitude varies sinusoidally. No force is prescribed on the round

window.

Since many of the numerical experiments with the full cochlea model require

days of computing we have made a small modi�cation of the cochlear anatomy

in our model. In the altered model the cochlea is packed more tightly and the

whole structure �ts in a half-cube of size 1cm � 1cm � 0.5cm rather than a

1 cm3 cube, making it possible to use a 
uid grid of 256� 256� 128 points.

This con�guration requires about 1.5 Gigabytes of main memory and the total

time needed to simulate a single time step is reduced approximately in half.

The main di�erence between the \half-cube model" and our original model is

that in the former model the basilar membrane if 
at. I.e. its spiraling shape

is completely contained within a plane. All of our test simulations reported in

the next section have been carried out with the half-cube model.
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5 Numerical Experiments

The good eÆciency of the immersed boundary solver allowed us to complete

several large numerical experiments. In this section we present preliminary

results from four such experiments. We are continuing this work and a more

detailed exposition of the collected data and its analysis will be published in

our next paper.

Each of the experiments presented here consisted of applying a pure tone in-

put of a given frequency at the stapes and studying the subsequent motion of

the basilar membrane. The input at the stapes was simulated by specifying an

external periodic force vector �eld on the oval window grid. A very small time

step of 30 nano-seconds was chosen to guarantee numerical stability and good

detail. The choice of the time step was made as a result of the convergence

study of the system carried out in [12]. Our initial aim in the numerical exper-

iments was to reproduce the qualitative characteristics of cochlear mechanics

predicted by asymptotic analysis and previously reported computational mod-

els. Consequently, we have attempted to capture the steady state response of

the basilar membrane to pure tones and in each of our experiments we have

run the system for the duration equivalent to several input cycles. For exam-

ple, for a 10 kHz input tone we have run the system for more than 30,000

time steps, equivalent to 0.9 msec of total simulated time. On a 16 processor

SuperDome this computation required more than 20 hours to complete. Every

10th time step of the simulation the program generated an output �le contain-

ing the instantaneous position of the computation grids. The total amount of

storage required is measured in tens of Gigabytes of disk space. Correspond-

ingly, the 2 kHz experiment required �ve times as much computational time

and storage.

We have veri�ed that all of our experiments have been carried in the system's

linear regime, i.e. the input force at the stapes was kept very small, resulting

in the basilar membrane displacements on the order of nano-meters. Indeed,

increasing the force by a factor of 10 resulted in basilar membrane displace-

ments almost exactly ten times bigger. Since in each experiment the system

was started from rest, we have observed initial oscillatory transient response,

which was followed by the smoothing of the traveling wave. A close-up snap-

shot of the traveling wave propagating along the basilar membrane is shown

in Figure 3. The wave magnitude has been ampli�ed in the direction of the

normal to the basilar membrane.

Much information about the traveling wave is revealed in the plot of the

centerline of the basilar membrane. Four such plots are shown in Figure 4 and

Figure 5. Figure 4 shows the results of the experiments with input frequency of

15 kHz (top plot) and 10 kHz (bottom plot), and Figure 5 shows the results of
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Fig. 3. A close-up snapshot of the traveling wave propagating along the basilar

membrane. The magnitude of the basilar membrane displacement has been ampli�ed

in the normal direction.

the 5 kHz and the 2 kHz experiments. In each plot an instantaneous position of

the centerline of the basilar membrane is shown, as well as the wave envelope

computed over a range of time steps.

Our experiments reproduced the following characteristic features of cochlear

mechanics: In each instance, in response to a pure tone input frequency, we

have observed a traveling wave propagating from the stapes in the direction

of the helicotrema. The amplitude of the wave is gradually increasing until

it reaches a peak at a characteristic location along the basilar membrane de-

pending on the input frequency. The speed of the wave is sharply reduced

as it propagates further along the basilar membrane. The higher the input

frequency, the closer the peak of the wave is to the stapes. Furthermore, after

reaching the peak the wave drops o� sharply, essentially shutting down. Since

no active mechanism has been incorporated into the present model yet, the

observed traveling wave is not sharply focused.

It is interesting to note that while the computed traveling wave is smooth, its

envelope is generally not smooth. The 10 kHz experiment shown in Figure 4

is a particularly striking example, with the envelope turning 90Æ sharply in

the vertical direction approximately at the 0.75 cm location along the basilar

membrane. We believe that further testing is necessary and more data must

be collected from numerical experiments before further conclusions about the

shape of the traveling wave envelope can be drawn.

The interested reader is invited to view several animations of our results by

visiting our web site[1].
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Fig. 4. A snapshot of the center line of the basilar membrane response and wave

envelope. The top plot shows the response to the 15 kHz input sound. The wave

snapshot is taken after 55000 time steps (1.65 msec). The wave envelope was com-

puted over time steps 45,000 - 55,000. The bottom plot shows a 10 kHz experiment.

The wave is shown after 30,000 time steps and the envelope was computed over

time steps 20,000 - 30,000. The unit of vertical scale is 10�5cm.

6 Summary and Conclusions

We have constructed a comprehensive three-dimensional computational model

of the passive cochlea using the immersed boundary method. Extensive opti-

mization and parallelization made it possible to complete several large scale

numerical simulations on a 32-processor shared memory HP Superdome com-

puter. Together with the previous demonstration of the traveling wave paradox

(see [12]), the pure tone experiments reported in this paper capture the most

important properties of the cochlear macro-mechanics.

We would like to note that our results are of somewhat preliminary nature.
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Fig. 5. A snapshot of the center line of the basilar membrane response and wave

envelope. The top plot shows the response to the 5 kHz input sound. The wave

snapshot is taken after 70000 time steps. The wave envelope was computed over

time steps 60,000 - 70,000. The bottom plot shows a 2 kHz experiment. The wave

is shown after 100,000 time steps and the envelope was computed over time steps

100,000 - 130,000. The unit of vertical scale is 10�6cm and 10�7cm in the top and

in the bottom plots, respectively.

We are continuing to test the model and plan to complete more numerical

experiments in order to compare our simulation results with the available ex-

perimental and modeling data. We believe our results demonstrate the promise

of large scale computational modeling approach to the study of cochlear me-

chanics.

The cochlea is a very small and delicate organ and it is very diÆcult to study

experimentally. Many of the important questions of cochlear mechanics are

mathematically very complicated, but they can be studied using numerical

simulation. Two such general questions concern the e�ects of the geometry

and of the elastic properties of various cochlear components on the dynamics.
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It is easy to test cochlear models with di�erent geometries such as a straight-

ened out model. Testing di�erent elastic models for the cochlear components

is somewhat more involved since it generally requires testing each such model

separately within the immersed boundary framework. It is nevertheless a fea-

sible project, which is straightforward for the expert.

Going beyound the questions of passive cochlear macro-mechanics we would

like to incorporate an active mechanism into our model. The function of the

live cochlea undoubtedly depends on the combination of passive cochlear me-

chanics with an active mechanism. A comprehensive model of the passive

cochlea is therefore a necessary �rst step towards modeling the active live

cochlea. It is interesting to note that re�ning the mesh width of the compu-

tational grids by a factor of 2 yields a material mesh width of approximately

10�m. This mesh width is small enough to allow much of the structure of

the organ of Corti to be incorporated into the model. Such a re�ned model is

not yet feasible since it would require approximately 16 times more comput-

ing power than our present model. Indeed, the large scale of computations is

presently the biggest obstacle to progress in cochlear modeling, but this is, no

doubt, a temporary obstacle. Continuing progress in hardware and software

will make a construction of even the re�ned cochlear model possible soon.
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