
K. Harrison

CERN, 12th June 2003

RELEASE OF GANGA

– Basics and organisation

– What Ganga should do tomorrow

– Ganga design

– What Ganga will do today

– Next steps



GANGA BASICS

– Ganga is an acronym for Gaudi/Athena and Grid Alliance

– Short-term aims:

⇒ Deal with configuring and running Gaudi-based applications

⇒ Deal with submitting and monitoring jobs to/on distributed (Grid)
and local batch systems

– Longer-term aim:

⇒ Develop Gaudi services for use in Grid enviroment
(enable querying of replica catalogues, enable publication of
information for Grid monitoring, etc.)

– Ganga is being developed as an ATLAS/LHCb common project, with
support in UK from GridPP

⇒ Good possibilities for contributing to LCG Physicist Interface (PI)



PROJECT ORGANISATION

– Current main contributors to Ganga are:

⇒ Developers: K.Harrison, W.Lavrijsen, A.Soroko, C.L.Tan

⇒ Technical direction: P.Mato, C.E.Tull

⇒ GriPP coordination: N.Brook (handing over soon to G.Patrick),
R.W.L.Jones

– Ganga-related information regularly updated on web site:
http://ganga.web.cern.ch/ganga

– A mailing list has been active since November 2002:
project-ganga@cern.ch

– Usually have telephone meeting at least once every two weeks:
details of times are placed on web site, and are circulated to mailing list

– Presentations of ganga status and plans given at various other
meetings of ATLAS, LHCb and GridPP



WHAT GANGA SHOULD DO TOMORROW

Short-term plans: June-September 2003
Longer-term plans: October 2003 onwards

1) Simplify users’ lives by providing a single interface for working with all
Gaudi-based (offline) applications

– Short term: graphical user interface (GUI) and command-line
interface (CLI) for working with analysis jobs (in particular, DaVinci
jobs)
Incorporate features from ATLAS Athena Startup Kit, ASK
(W.Lavrijsen)

– Longer term: allow for running of production-type jobs, integrating
with existing production systems of LHCb and ATLAS: DIRAC
(A.Tsaregorodtsev et al.) and AtCom (L.Goossens et al.)



2) Make workflows/data transformations easy to define, store and
instantiate, and supply templates for common use cases

– Short term: Ganga will provide a simple workflow-definition
mechanism of its own

– Adopt more sophisticated workflow definition procedure, for example
based on tools developed in context of DIRAC (G.Kuznetsov et al.),
or based on Chimera (R.Gardner et al.)

3) Help with application configuration by providing a job-options editor

– Short term: allow access to, and modification of, all job options,
with possibilities for choosing options for a particular algorithm or
user favorites

– Longer term: give guidance on meaningful values (with input from
algorithm developers)



4) Provide a simple, flexible procedure for splitting and closing jobs

– Short term: introduce splitting/cloning procedure, deal with
common use cases, take care of merging of outputs where
appropriate/possible

– Longer term: dependent on user feedback

5) Help users keep track of what they’ve done

– Short term: provide catalogue of jobs and their status, and allow
access to settings for each

– Longer term: dependent on user feedback

6) Perform job monitoring tasks on local and distruted batch systems

– Short term: pull information from jobs, allowing automatic updates
of status and user-initiated queries

– Longer term: move to system where jobs push information to a
user-specified location; integrate with NetLogger, to have detailed
information on progress of jobs on the Grid



7) Allow for user mobility

– Short term: provide a single procedure for submitting jobs to
different types of batch systems (EDG, LSF, PBS, other), with the
batch system accessible from the machine where Ganga is run

– Longer term: allow user to submit jobs from any machine with
Ganga running, to batch queues on any machine (Gatekeeper) where
user has an account or is in the Grid mapfile; take care of software
installation at remote nodes, for example building on procedure used
in DIRAC or using pacman (S.Youssef)

8) Other things, to be determined by user requests, but should consider
possibilities for

– web-portal interface

– interactive analysis (based on ROOT)

– data-management services



User running
Ganga client

Gatekeeper

Worker nodes

Software server

Send script

Send job output

Request
software

Receive
software

Submit job

Request software

Receive software

Send job output



DESIGN DETAILS

User

GUI

CLI

Software
Bus

Job definition

Job registry

Script generation

Job submission

File transfer

Job monitoring

Gaudi/Athena
job definition

Gaudi/Athena
job-options editor

Gaudi/Athena
job splitting

Gaudi/Athena
output collection

G
audiP

ython

P
ythonR

oot

– User has access to functionality of Ganga
components both through GUI, and
through CLI, layered one over the other
above the software bus

– Components used by Ganga can be di-
vided into three categories:

⇒ Ganga components of general applica-
bility (to right in diagram)

⇒ Ganga components providing spe-
cialised functionality (to left in dia-
gram)

– External components (at bottom in dia-
gram)



GANGA COMPONENTS OF GENERAL APPLICABILITY

– Components potentially have uses outside ATLAS and LHCb

⇒ Could be of interest for LCG PI project and other eScience
applications

– Core component provides classes for job definition, where a job is
characterised in terms of: name, workflow, required resources, status

⇒ Workflow is represented as a sequence of elements (executables,
parameters, input/output files, etc.) for which associated actions are
implicitely defined

⇒ Required resources are specified using a generic syntax



– Other components perform operations on, for, or using job objects

⇒ Job-registry component allows for storage and recovery of job
information, and allows for job objects to be serialised

⇒ Scrip-generation component translates a job’s workflow into the set
of instructions to be executed when the job is run

⇒ Job-submission component submits workflow script to target batch
system, creating JDL (job-description language) file if necessary and
translating resource requests as required

⇒ File-transfer component handles transfer between sites of input and
output files, adding appropriate commands to workflow script at
submission time

⇒ Job-monitoring component performs queries of job status



GANGA COMPONENTS PROVIDING SPECIALISED
FUNCTIONALITY FOR LHCB AND ATLAS

– Components incorporate knowledge of the Gaudi/Athena framework

– Component for Gaudi/Athena job definition adds classes for workflow
elements not dealt with by general-purpose job-definition component,
for example applications packaged using CMT; component also
provides workflow templates covering common tasks

– Other components provide for job-option editing, job splitting, and
output collection



EXTERNAL COMPONENTS

– Additional functionality obtained using components developed outside
of Ganga:

• Modules of python standard library

• Non-python components for which appropriate interface has been
written, for example Gaudi framework itself and ROOT,
BoostPython



WHAT GANGA WILL DO TODAY (OR VERY SOON)

– Code for Ganga v1r0 is in Gaudi CVS repository

– Want to carry out a few more checks and do some repackaging, then
release during week 16th-20th June

– Ganga v1r0 includes:

• GUI

• Command-line access to underlying tools (but not user oriented)

• Job-options editor (so far set up only for ATLAS fast simulation)

• Submission of some types of jobs, including DaVinci jobs, to
different batch systems (LSF, PBS, EDG)

• Mechanism for splitting/cloning jobs

• Job catalogue

• Monitoring (made more system friendly since March software week)



– Items on which work is in progress, but which aren’t ready for v1r0,
include:

• Software bus that adds to functionality of python interpreter

• User-oriented CLI

• Pure client submission

• Enhancement of features already present in v1r0 (generalised
job-options editor, treatment of more types of job, etc.)

– Ganga v1r1 scheduled for release during week beginning 28th July, and
should include some of above



GUI (A.Soroko)

– GUI developed using wxPython

– User presented with main window, job tree and python prompt

– Some simplifications made in response to comments at March software
week



UNDERLYING TOOLS AND CLI (K.Harrison)

– Underlying tools currently use the following breakdown:

• Workflow: a series of WorkSteps, defining the sum of the actions to
be performed when the job is run

• WorkStep: a set of elements providing all information necessary to
run one instance of an executable

• WorkStep/Workflow elements: Command, InputFile, OutputFile,
CMTPackage (produces a library), CMTApplication (has an
executable associated with it)
⇒ other elements to follow



– Underlying tools can be accessed from Ganga prompt to submit
DaVinci job:
from GangaComponent import *
daVinciSetup = GangaCommand(
“source /afs/cern.ch/lhcb/scripts/ProjectEnv.sh DaVinci v8rl”)
daVinci = GangaCMTApplication(
“Phys/DaVinci”,”v8rl”,”DaVinci.exe”,”options/DaVinci.opts”)
workStep1 = GangaWorkStep([daVinciSetup, daVinci])
workFlow = GangaWorkFlow([workStep1])
lsfJob = GangaLSFJob(“daVinciTest”,workFlow)
lsfJob.build()
lsfJob.submit()



• GUI and CLI simplify use of underlying tools

• CLI under development will reduce above, adding splitting into
sub-jobs, as:
job.create(“daVinciTest”,”DaVinci v8r1”)
job.submit(lsf@cern.ch,20)



JOB-OPTIONS EDITOR (C.L.Tan)

– Job-options editor has been developed with hard-coded defaults
appropriate to ATLAS fast simulation, but will be generalised so that
defaults for any Gaudi/Athena application can be read from a file or
database

– Prevents some errors (mis-spelling of options/values, incorrect syntax)

– Allows definition/manipulation of sequences and lists

– Editor is option-type aware

• Drop-down menus for discrete choices

• Arbitrary value entry for simple options

• Value append for list-type options



– Preferred settings can be saved to file for subsequent reloading

– Future improvements should include:

• Expansion of include files

• Support for python job options

• Display of favorite options first

• Display of option values by algorithm



SOFTWARE BUS (W.Lavrijsen)

– Prototype software bus, PyBus, has been developed as user-level
python module, with no privileges over modules

⇒ Standard python modules corrently handled by PyBus

⇒ PyBus components treated as modules by python interpreter

– Allows component to be loaded by logical, functional or actual name

⇒ First two not necessarily unique: choose on basis of PyBus
configuration, priority scheme or user input

– Performs complete unloading and reloading of components, and allows
component replacement

– Allows components to register their parameters, permitting component
configuration



CLONING AND SPLITTING OF JOBS
(W.Lavrijsen, A.Soroko, C.E.Tull)

– Sub-jobs from cloning or splitting a Gaudi/Athena job are near copies
of one another, but are distinguished by name and may have a different
value for one or more of the job-option parameters

– Experimenting with generic approach, where a “splitting function”
returns for all sub-jobs the job-option parameters that differ from those
of the initial job

– Splitting functions for common cases should be supplied with Ganga;
more specialised splitting functions can be added by the user

– In the typical DaVinci case, the splitting function should examine the
list of input files associated with EventSelector.Input in the job
options, and assign some group of files to each sub-job

– The Ganga job handler dispatches the sub-jobs, and stores information
for each in separate directories



CONCLUSIONS

– A lot of work has been done on Ganga since March software week

– Code for Ganga v1r0 is in Gaudi CVS repository

⇒ Release during week 16th-20th June, following tests and some
repackaging

– Ganga v1r0 is not production quality, but is useful for giving a feel of
how things should work

– Ganga team has a well-defined plan of additions and improvements,
but would welcome user feedback on what is already implemented, and
on priorities for the things that are missing


