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Introduction Introduction Introduction Introduction     

In late 1996, Caltech HEP (H. Newman), Caltech's Center for Advanced Computing Research (P. 
Messina), CERN IT Division (J.Bunn, J.May, L.Robertson), and Hewlett Packard Corp. (P.Bemis, then 
HP Chief Scientist) initiated a joint project on "Globally Interconnected Object Databases", to 
address the key issues of wide area network-distributed data access and analysis for the next 
generation of high energy physics experiments.  

The project was spurred by  

• = the advent of network-distributed Object Database Management Systems, whose 
architecture holds the promise of being scalable up to the multi-Petabyte range required 
by the LHC experiments  

• = the installation of large (0.2 TIPs) computing and data handling systems at CACR as of 
mid-1997,   

• = the fundamental need in the HEP community to prototype Object Oriented software, 
databases and mass storage systems, which are at the heart of the LHC and other (e.g. 
BaBar) major experiments' data analysis plans, and  

• = the availability of high speed networks, including ESnet, and the transatlantic link 
managed by the Caltech HEP group; as well as the next generation networks (CalREN-2 in 
California and Internet-2 nationwide) planned to come into operation in 1998-9 with 
speeds comparable to those to be used by HEP in the LHC era.  

A plan to understand the characteristics, limitations, and strategies for efficient data access using 
these new technologies was formulated by Newman and Bunn in early 1997. A central element of 
the plan was the development of a prototype "Regional Center". This reflects the fact that both the 
CMS and ATLAS Computing Technical Proposals foresee the use of a handful of such centers in 
addition to the main center at CERN, with distributed database "federations" linked across 
national and international networks. Particular attention was to be paid to how the new software 
would manage the caching, clustering and movement between storage media and across 
networks of collections of physics objects used in the analysis. In order to ensure that the project 
would immediately benefit the physics goals of CMS and US CMS while carrying out its technical 
R&D, the project also called for the use of the CACR computing and data storage systems to 
produce Terabyte samples of fully-simulated signal and background events (with a focus on 
intermediate-mass Higgs searches) to be stored in the database. The plan was agreed to by all 
parties by the Spring of 1997, and work officially began in June 1997.  

ProgressProgressProgressProgress    
 
Rapid and sustained progress has been achieved over the last two years: we have built prototype 
database, reconstruction, analysis and (Java3D) visualization systems. This has allowed us to test, 
validate and begin to develop the strategies and mechanisms that will make the implementation 
of massive distributed systems for data access and analysis in support of the LHC physics program 
possible. These systems will be dimensioned to accommodate the volume (measured in PetaBytes) 
and complexity of the data, the geographical spread of the institutes and the large numbers of 
physicists participating in each experiment. At the time of this writing the planned investigations 
of data storage and access methods, performance and scalability of the database, and the 
software development process, are all completed, or currently underway.  



 

Current work includes the deployment and tests of the Terabyte-scale database at a few US 
universities and laboratories participating in the LHC program. In addition to providing a source of 
simulated events for evaluation of the design and discovery potential of the CMS experiment, the 
distributed database system will be used to explore and develop effective strategies for 
distributed data access and analysis at the LHC. These tests are foreseen to use local, regional 
(CalREN-2) and the Internet-2 backbones nationally, to explore how the distributed system will 
work, and which strategies are most effective.   

The GIOD Project is due to complete at the end of 1999.  

Computing Infrastructure Computing Infrastructure Computing Infrastructure Computing Infrastructure     

We have adopted several key technologies that will probably play significant roles in the LHC 
computing systems: OO software (C++ and Java), commercial OO database management systems 
(ODBMS; specifically Objectivity/DB), hierarchical storage management systems (HPSS) and fast 
networks (ATM LAN and OC12 regional links). The kernel of our prototype is a large (~1 Terabyte) 
Object database containing ~1,000,000 fully simulated LHC events. Using this database, we have 
investigated scalability and clustering issues in order to understand the performance of the 
database for physics analysis. Tests included making replicas of portions of the database, by 
moving objects in the WAN, executing analysis and reconstruction tasks on servers that are 
remote from the database, and exploring schemes for speeding up the selection of small sub-
samples of events. Another series of tests involves hundreds of "client" processes simultaneously 
reading and/or writing to the database, in a manner similar to simultaneous use by hundreds of 
physicists, or in a data acquisition farm. 

The GIOD project uses several of the latest hardware and software systems: 

1. The Caltech HP Exemplar, a 256-PA8000 CPU SMP machine of ~3,000 SPECInt95  

2. The High Performance Storage System (HPSS) from IBM  

3. The Objectivity/DB Object Database Management System  

4. An HP-C200 Workstation equipped with a dedicated 155 MBits/sec optical fiber link to the 
Exemplar (via a FORE ATM switch)  

5. Several Pentium II-class PCs running Windows/NT, including an HP "Kayak" with a special "fx4" 
graphics card, and 256 MBytes RAM  

6. Various high speed LAN and WAN links (ATM/Ethernet)  

7. C++ and Java/Java3D  

The Caltech Exemplar 

The Exemplar is a NUMA machine with 64 GBytes of main memory, shared amongst all 256 
processors. It runs the SPP-UX Unix operating system, which is binary compatible with HP-UX. The 
processors are interconnected using a CTI toroidal wiring system, which gives excellent low-
latency internode communication. Two HiPPI switches also connect the nodes. There is over 1 
TeraByte of disk attached to the system, which can achieve up to 1 GigaByte/sec parallel reads 
and writes. Fast Ethernet and ATM connections are available. The machine is located at, and 
operated by, the Caltech Centre for Advanced Computing Research (CACR). Funding for the 
machine is by a joint Caltech/JPL/NASA project, not related to GIOD.  
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We are also using several Pentium-class PCs running Windows/NT, and a couple of HP model 755 
workstations. An HP model C200 workstation equipped with 155 Mbit/sec ATM has been 
installed, and this is directly fibre-attached (via a FORE ATM switch) to the Exemplar. 

The Objectivity Database 

The Objectivity/DB ODBMS is licensed for the Exemplar and workstations being used in the 
project. It is a pure object database that includes C++ and Java bindings, federations of individual 
databases, and the possibility of wide area database replication. We have also installed the 
Versant ODBMS, and have compared its functionality and inter-ODBMS migration issues. 

The Objectivity/DB architecture comprises a “federation” of databases. All databases in the 
federation share a common Object scheme, and are indexed in a master catalog. Each database is 
a file. Each database contains one or more “containers”. Each container is structured as a set of 
“pages” (of a unique size) onto which the persistent objects are mapped. The database can be 
accessed by clients which are applications linked against the Objectivity/DB libraries and the 
database schema files. Client access to local databases is achieved via the local file system. 
Access to remote databases is made via an “Advanced Multithreaded Server” which returns 
database pages across the network to the client. Database locks are managed by a lockserver 
process. Locks operate at the database container level. 

 

Networking 

The Exemplar, HPSS and workstation systems are interconnected on the LAN using standard 
Ethernet and/or with HiPPI. Wide area connections between these systems and CERN (over a 4 
Mbit/sec trans-Atlantic link) are being used in tests of distributed database "federations".  

A "CENIC" OC12 link between CACR and the San Diego Supercomputer Centre (SDSC) will be used 
for WAN database tests between the Exemplar and a large peer system in San Diego. In addition, 
CACR will avail itself of Internet 2/NGI national connections and peering with ESNET in 1999. 



Database scalabilityDatabase scalabilityDatabase scalabilityDatabase scalability and access tests  and access tests  and access tests  and access tests     

We developed a simple scaling test application, and looked at the usability, efficiency and 
scalability of the Object Database while varying the number of objects, their location, the object 
selection mechanism and the database host platform.  

The "Stars" Application 
Overview of the application 

The "stars" application is code that addresses the following problem domain: A region of the sky is 
digitized at two different wavelengths, yielding two sets of candidate bright objects, each 
characterised by a position (x,y) and width (sigma). The problem is to find bright objects at the 
same positions in both sets, consistent with the width of each. The schema used in the application 
specifies "star" objects with the data members xcentre,ycentre, sigma (width), catalogue 
(identification number) with associated member functions that return the position, the sigma, the 
catalogue number, the proximity of a point (X,Y) to the "star", and so on. 

  

Figure 2: Showing the "Stars" application problem domain: matching bright objects from two scans 
of the sky at different wavelengths.    

The application is in two parts: the first part generates a randomly-distributed set of stars in each 
of two databases in an Objectivity federated database. The second part attempts to match the 
positions of each star in the first database with each star in the second database, in order to find 
the star in the second database that is most close to the star in the first. We expect the matching 
time to scale as N2, where N is the number of stars in each database. 

This application, although not taken from High Energy Physics, is analogous to matching energy 
deposits in a calorimeter with track impact positions, which is a typical event reconstruction task. 
The application has the advantage that it is small, and easy to port from one OS to another, and 
from one ODBMS to another 

Details of the application 

• = Create a federated database with a star database for each wavelength  

• = Create a container in each database, and generate in each a number of stars with random 
positions and widths 



• = “loop” over all stars in one database, and for each one, find the nearest star in the other, 
using a proximity function 

o Proximity(x,y) = exp( - sqrt( (x-xcentre)**2 + (y-ycentre)**2 ) / sigma) 

o where (x,y) is the position of the candidate, and xcentre, ycentre and sigma are 
the position and width of the target star. 

• = Using the class iterators provided by Objectivity, with a selection using standard C++ e.g.  

o if(xlow<x && x<xhigh && ylow<y && y<yhigh) 

• = Using the iterator with an Objectivity predicate e.g.  

o sprintf(pred,’’x>%f && x<%f && y>%f && y<%f’’,xlow,xhigh, ylow,yhigh) 

o Itr.scan(dbH,oocRead,oocAll,pred) 

• = Using an index on (x,y) in the other database, with a lookup key  
ooGreaterThanLookupField 

Results from the Scalability Tests using “Stars” 

Using the "stars" application, we measured matching speed as a function of the number of objects 
in each database. The results showed that the fastest matching times are obtained by using an 
index on the positions of the star objects, and the slowest times with a text-based predicate" 
selection. 

We then measured matching speeds on different hardware and operating systems, comparing the 
performance of the matching using indices on the Exemplar, a Pentium II (266 MHz), a Pentium 
Pro (200 MHz) and an HP 755 workstation. For all these tests, we ensured that both stars 
databases were completely contained in the system cache, so that we could disregard effects due 
to disk access speeds on the various machines. The results demonstrated the platform 
independence of the ODBMS and application software, and illustrates the performance differences 
due to the speeds of the CPUs, the code generated by the C++ compilers, and so on.  

Another test showed how the application and database could reside on different systems, and 
what impact on performance there was if they did: we measured the matching speed on a 266 
MHz Pentium II PC with local databases, and with databases stored on a remote HP 755 
workstation. For the problem sizes we were using, there was no significant performance 
degradation when the data were held remotely from the client application.  

The Objectivity/DB cache is used to store one or more pages of the database(s) in memory, so 
improving performance for queries that access objects contained in cached pages. The size of the 
cache can be configured in the application code. We measured the behaviour of the "stars" 
application performance with differing cache sizes when matching 2000 star objects. In this test 
we observed some erratic behaviour when using very small caches. However, the overall results 
showed that, for the databases being used, the objects were all accomodated in the default sized 
cache, and no benefit was obtained by increasing it. 

Finally, we measured the speed at which large numbers of databases could be created within a 
single Objectivity federation. The results are shown below: 



 

Figure 3: Showing the tim taken to add new databases to an existing Objectivity federation. We were 
able to create a federation of 32,000 databases before boredom set in.    
Summary of Scalability Tests with “Stars” 

Our results demonstrated the platform independence of both the database and the application, 
and the locality independence of the application. We found, as expected, significance query 
performance gains when objects in the database were indexed appropriately.  

Scalability tests on the Caltech Exemplar 
The scalability tests were performed on the HP Exemplar machine at Caltech. As described 
already, this is a 256 CPU SMP machine of some 0.1 TIPS. There are 16 nodes, which are 
connected by a special-purpose fast network called a CTI. Each node contains 16 PA8000 
processors and one node file system. A node file system consists of 4 disks with 4-way striping, 
with a file system block size of 64 KB and a maximum raw I/O rate of 22 MBytes/second. We used 
up to 240 processors and up to 15 node file systems in our tests. We ensured that data was 
always read from disk, and never from the file system cache. An analysis of the raw I/O behaviour 
of the Exemplar can be found in [5].  
 
 
 
 
 



 
Figure 4: Configuration of the Hp Exemplar at Caltech 
  
The Exemplar runs a single operating system image, and all node file systems are visible as local 
UNIX file systems to any process running on any node. If the process and file system are on 
different nodes, data is transported over the CTI. The CTI was never a bottleneck in the test loads 
we put on the machine: it was designed to support shared memory programming and can easily 
achieve data rates in the GByte/second range. As such, the Exemplar can be thought of as a farm 
of sixteen 16-processor UNIX machines with cross-mounted file systems, and a semi-infinite 
capacity network. Though the Exemplar is not a good model for current UNIX or PC farms, where 
network capacity is a major constraining factor, it is perhaps a good model for future farms which 
use GByte/second networks like Myrinet as an interconnect.  
 
The object database tested was the HP-UX version of Objectivity/DB.  
 
We made two sets of tests, completed with different database configurations and different data.  
 
Tests with synthetic data 
 
Our first round of tests used synthetic event data represented as sets of 10 KByte objects. A 1 
MByte event thus became a set of 100 objects of 10 KB. Though not realistic in terms of physics, 
this approach does have the advantage of giving cleaner results by eliminating some potential 
sources of complexity.  
 
For these tests we used Objectivity/DB v4.0.10. We placed all database elements (database 
clients, database lockserver, federation catalog file) on the Exemplar itself. Database clients 
communicated with the lockserver via TCP/IP sockets, but all traffic was local inside the 
supercomputer. The federation catalog and the payload data were accessed by the clients though 
the Exemplar UNIX filesystem interface.  
 
The test loads were generated with the TOPS framework which runs on top of Objectivity. 
  
Two things in the Objectivity architecture were of particular concern. First, Objectivity does not 
support a database page size of 64 KB, it only supports sizes up to 64 KB minus a few bytes. Thus, 
it does not match well to the node file systems which have a block size of exactly 64 KB. After 
some experiments we found that a database page size of 32 KB was the best compromise, so we 
used that throughout our tests. Second, the Objectivity architecture uses a single lockserver 
process to handle all locking operations. This lockserver could become a bottleneck when the 
number of (lock requests from) clients increases.  
 
Reconstruction test 
 



We have tested the database under an event reconstruction workload with up to 240 clients. In 
this workload, each client runs a simulated reconstruction job on its own set of events. For one 
event, the actions are as follows:  
 

• = ReadingReadingReadingReading: 1 MB of 'raw' data is read, as 100 objects of 10 KB. The objects are read from 3 
containers: 50 from the first, 25 from the second, and 25 from the third. Inside the 
containers, the objects are clustered sequentially in the reading order.  

• = WritingWritingWritingWriting: 100 KB of 'reconstructed' data is written, as 10 objects of 10KB, to one 
container.  

• = Computation:Computation:Computation:Computation: 2.103 MIPSs are spent per event (equivalent to 5 CPU seconds on one 
Exemplar CPU).  

 
Reading, writing, and computing are interleaved with one another. The data sizes are derived from 
the CMS computing technical proposal. The proposal predicts a computation time of 2.104 MIPSs 
per event. However, it also predicts that CPUs will be 100 times more powerful (in MIPS per $) at 
LHC startup in 2005. We expect that disks will only be a factor 4 more powerful (in 
MBytes/second per $) in 2005. In our test we chose a computation time of 2.103 MIPSs per event 
as a compromise. The clustering strategy for the raw data is based on work described in [9]. The 
detector is divided into three separate parts and data from each part are clustered separately in 
different containers. This allows faster access for analysis tasks which only require some parts of 
the detector. The database files are divided over four Exemplar node file systems, with the 
federation catalog and the journal files on a fifth file system. In reading the raw data, we used the 
read-ahead optimisation described in a later section.  
 
 

 
Figure 5: Scalability of Reconstruction workloads    



 
The results from our tests are shown in the above Figure. The solid curve shows the aggregate 
throughput for the CMS reconstruction workload described above. The aggregate throughput (and 
thus the number of events reconstructed per second) scales almost linearly with the number of 
clients. In the left part of the curve, 91% of the allocated CPU resources are spent running actual 
reconstruction code. With 240 clients, 83% of the allocated CPU power (240 CPUs) is used for 
physics code, yielding an aggregate throughput of 47 MBytes/second (42 events/s), using about 
0.1 TIPS.  
 
The dashed curve shows a workload with the same I/O profile as described above, but half as 
much computation. This curve shows a clear shift a from CPU-bound to a disk-bound workload at 
160 clients. The maximum throughput is 55 MBytes/second, which is 63% of the maximum raw 
throughput of the four allocated node file systems (88 MBytes/second). Overall, the disk efficiency 
is less good than the CPU efficiency. The mismatch between database and file system page sizes 
discussed above is one obvious contributing factor to this. In tests with fewer clients on a platform 
with a 16 KByte file system page size, we have seen higher disk efficiencies for similar workloads.  
 
The read-ahead optimization 
 
When reading raw data from the containers in the above reconstruction tests, we used a read-
ahead optimisation layer built into our testbed. The layer takes the form of a specialised iterator, 
which causes the database to read containers in bursts of 4 MByte (128 pages) at a time. Without 
this layer, the (simulated) physics application would produce single page reads interspersed with 
computation. Tests have shown that such less bursty reading leads to a loss of I/O performance. 
  
We consider the case of N clients all iterating through N containers, with each client accessing 
one container only. The computation in each client is 2.103 MIPSs per MB read. Containers are 
placed in databases on two node file systems, which have a combined raw throughput of 44 
MBytes/second.  



 
Figure 3:Figure 3:Figure 3:Figure 3: Performance of many clients all performing sequential reading on a container 
 
Figure 3 shows that without the read-ahead optimisation, the workload becomes disk-bound fairly 
quickly, at 64 clients. Apparently, a lot of time is lost in disk seeks between the different 
containers. In this test, the lack of a read-ahead optimisation degrades the maximum I/O 
performance with a factor of two. Because of the results in [9], we expect that the performance 
would have been degraded even more in the reconstruction test of section 3, where each client 
reads from three containers.  
 
DAQ (Data Acquisition) test 
 
We do not currently advocate the use of an object database as the primary storage method in a 
real-time DAQ system. We feel that currently, the most attractive approach still is to stream data 
to flat files, and to then convert these files into objects in quasi-realtime. We have tested the 
database with such a quasi-realtime data acquisition workload up to 238 clients.  
 
In this test, each client is writing a stream of 10 KByte objects to its own container. For every 
event (1 MByte raw data) written, about 180 MIPSs (0.45 CPU seconds on the Exemplar) are spent 
in simulated data formatting. For comparison, 0.20 CPU seconds are spent by Objectivity in object 
creation and writing, and the operating system spends 0.01 CPU seconds per event. No read 
operations on flat files or network reads are done by the clients. The database files are divided 
over eight node file systems, with the federation catalog and the journal files on a ninth file 
system.  



 

 
Figure 6: Scalability of a DAQ workload    

 
The test results are shown in the above Figure. Again we see a transition from a CPU-bound to a 
disk-bound workload. The highest throughput is 145 MBytes/second at 144 clients, which is 82% 
of the maximum raw throughput of the eight allocated node file systems (176 MBytes/second).  
 
In workloads above 100 clients, when the node file systems become saturated with write requests, 
these file systems show some surprising behaviour. It can take very long, several minutes, to 
perform basic operations like syncing a file (which is done by the database when committing a 
transaction) or creating a new (database) file. We believe this is due to the appearance of long 'file 
system write request' queues in the operating system. During the test, other file systems not 
saturated with write requests still behave as usual. We conclude from this that one should be 
careful in saturating file systems with write requests: unexpected long slowdowns may occur.  



 

 
Figure 7: Client startup in the 1.103 MIPSs reconstruction test    
Client startup 
 
We measured the scalability of client startup times throughout our tests. We found that the client 
startup time depends on the number of clients already running and on the number of clients being 
started at the same time. It depends much less on the database workload, at least if the 
federation catalog and journal files are placed on a file system that is not heavily loaded. With 
heavily loaded catalog and journal file systems, startup times of many minutes have been 
observed.  
 
The above Figure shows a startup time profile typical for our test workloads. Here, new clients are 
started in batches of 16. For client number 240, the time needed to open the database and 
initialise the first database transaction is about 20 seconds. The client then opens four containers 
(located in three different database files), reads some indexing data structures, and initialises its 
reconstruction loop. Some 60 seconds after startup, the first raw data object is read. If a single 
new client number 241 is started by itself, opening the database and initialising the transaction 
takes some 5 seconds.  
 
Tests with real physics data 
 
Our second round of tests wrote realistic physics event data into the database. These data were 
generated from a pool of around one million fully simulated LHC multi-jet QCD events. The 
simulated events were used to populate the Objectivity database according to an object scheme 



that fully implemented the complex relationships between the components of the events. These 
events, and how they were generated and reconstructed, is more fully described below. 
 

 
Figure 8: The mapping of the event objects to the Object Database components. 
 
In these tests we used Objectivity/DB v5.0. Only the database clients and the payload databases 
were located on the Exemplar system. The lockserver was run on an HP workstation connected to 
the Exemplar via a LAN. The database clients contacted the lockserver over TCP/IP connections. 
The federation catalog was placed on a C200 HP workstation, connected to the Exemplar over a 
dedicated ATM link (155 Mbits/second). The clients accessed the catalog over TCP/IP 
connections to the Objectivity/DB AMS server, which ran on the C200 workstation.  
 
Each database client first read 12 events into memory, then wrote them out repeatedly into its 
own dedicated database file. Once the database file reached a size of about 600 MBytes, it was 
closed and deleted by the client. Then the client created and filled a new database file. This was 
arranged to avoid exhausting file system space during the tests. In a real DAQ system, periodic 
switches to new database files would also occur, whilst retaining the old database files.  
 
Database files were evenly distributed over 15 node file systems on the Exemplar. Of these node 
file systems, ten are rated at 22 Mbytes/second raw, the remaining five contain fewer disks and 
achieve a lower throughput.  
 
Results from tests with real physics data 
 
We present the results from two measurements. In the first measurement, event data was written 
into a single container in the client database file. In the second measurement, the six objects 
making up each event were written to separate containers in the same database file. Associations 
between the objects in the event were created.  
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Figure 5Figure 5Figure 5Figure 5: DAQ tests with real physics data  

Figure 5 shows the test results. The first measurement shows a best rate of 172 MBytes/second, 
reached with 45 running clients. In the second measurement a rate of 154 MBytes/second was 
achieved when running with 30 clients. We note that the overhead associated with writing into six 
separate containers is not significant. 
 
In related tests we ran more than 45 clients, but observed that only about 40 to 60 clients were 
actively writing to the database at the same time. All remaining clients were busy closing their 
database file (when the 600 MByte size limit was reached), then deleting it and creating a new 
one. This effect is not currently understood.  
 
Comments on the Objectivity lockserver 
 
The lockserver, whether run remotely or locally on the Exemplar, was not a bottleneck in any of our 
tests. From a study of lockserver behaviour under artificial database workloads with a high rate of 
locking, we estimate that lockserver communication may become a bottleneck in a DAQ scenario 
above 1000 MB/s.  
 
Conclusions from the Exemplar scalability tests 
 
In the first series of tests, with all components of the Objectivity/DB system located on the 
Exemplar, we observed almost ideal scalability, up to 240 clients, under synthetic physics 
reconstruction and DAQ workloads. The utilisation of allocated CPU resources on the Exemplar is 
excellent, with reasonable to good utilisation of allocated disk resources. It should be noted that 
the Exemplar has a very fast internal network.  
 
In the second series of tests the database clients were located on the Exemplar, and the 
Objectivity lockserver, AMS and catalog were located remotely. In this configuration, the system 
achieved aggregate write rates into the database of more than 170 MBytes/second. This exceeds 
the 100 MBytes/second required by the DAQ systems of the two main LHC experiments. 

 



The Versant ODBMS The Versant ODBMS The Versant ODBMS The Versant ODBMS     

We evaluated the usability and performance of Versant ODBMS, Objectivity's main competitor. 
Based on these tests we concluded that Versant would offer an acceptable alternative solution to 
Objectivity, if required.  

 

Figure 9: Time to create databases as a function of the number already existing: Objectivity and 
Versant    



 

Figure 10: Time to match objects using the "stars" application: Objectivity and Versant    

Code comparisons: Objectivity and Versant 
We spent some time converting our “stars” application (see above) from Objectivity to Versant. 
This process took a couple of days. In the following tables, we show differences between the APIs 
and the mechanics of creating and populating databases. 

Table 1: Objectivity and Versant database creation semantics 
Objectivity Versant
Create new federated database
oonewfd -lockserver pcbunn -fdfilepath
f:\stars\stars.fdb starsdb

Imbue it with the stars “schema”
ooddlx stars.ddl starsdb

Compile the source file
cl.exe … stars.cpp

Compile the file created by “ooddlx”
cl.exe … stars_ddl.cpp

Link the application
link.exe … stars.obj stars_ddl.obj …

Make new group database placeholders
makedb -g starsdb1
makedb -g starsdb2

Create the group database files
createdb starsdb1
createdb starsdb2

Create the “schema” .sch from the .imp file
schcomp -I. -I\versant\5_0_7\NT\h
schema.imp

Imbue the databases with the schema
sch2db -D starsdb1 -y schema.sch
sch2db -D starsdb2 -y schema.sch

Compile the application and methods files
cl.exe … stars.cpp
cl.exe … methods.cpp

Compile the file created by “schcomp”
cl.exe … schema.cxx

Link the application
link.exe … stars.obj methods.obj schema.obj
...

 



 

Table 2: Comparing the use of Iterators and Lists between Objectivity and Versant 

Objectivity Versant 
cHandle1.open(dbHandle1,"DB1_CONT",oocRead);
cHandle2.open(dbHandle2,"DB2_CONT",oocRead);

if(star_iterator1.scan(cHandle1,oocRead)) {
time(&start);
while (star_iterator1.next()) {

// find 3-sigma value for this star ...
sigma3 = 3.0*star_iterator1-

>get_sigma();
xlow = star_iterator1->get_x() -

sigma3;
xhigh = xlow + 2.*sigma3;
ylow = star_iterator1->get_y() -

sigma3;
yhigh = ylow + 2.*sigma3;
nearest = -1;

if(star_iterator2.scan(cHandle2,oocRead)) {
dmax = 0.0;
while (star_iterator2.next())

{ x = star_iterator2->get_x();
y = star_iterator2->get_y();

if(x>xlow && x<xhigh && y>ylow
&& y<yhigh) {

d = star_iterator1-
>proximity(x,y);

if (d>dmax) {
dmax = d;
nearest =
star_iterator2-

>get_catalogue();
}
}

}
checksum += ~nearest;

}
time(&finish);
cout << "Checksum " << checksum <<

endl;
}

LinkVstr<Star> a = Star::Find_all();

::dom->set_default_db("starsdb2");
LinkVstr<Star> b = Star::Find_all();

for(i=0;i<a.size();i++) {
// find 3-sigma value for this star ...

sigma3 = 3.0*a[i]->get_sigma();
xlow = a[i]->get_x() - sigma3;
xhigh = xlow + 2.*sigma3;
ylow = a[i]->get_y() - sigma3;
yhigh = ylow + 2.*sigma3;

dmax = 0.0;
nearest = -1;
for(j=0;j<b.size();j++) {

x = b[j]->get_x();
y = b[j]->get_y();

if(x>xlow && x<xhigh && y>ylow &&
y<yhigh) {

d = a[i]->proximity(x,y);
if(d>dmax) {

dmax = d;
nearest = b[j]-

>get_catalogue(); }
}

}
checksum += ~nearest;

}
b.release();
a.release();
time(&finish);
cout << "Checksum " << checksum << endl;

 
 

Table 3: Comparing database population 

Objectivity Versant 
// Get a handle on the container in the
first database

ooHandle(Collection) db1Cont =
new("DB1_CONT",1,NPAGES,0,dbHandle1)
Collection("Stars1");

// and a handle on the container in the
second

ooHandle(Collection) db2Cont =
new("DB2_CONT",1,NPAGES,0,dbHandle2)
Collection("Stars2");

cout << "Generating " << NSTARS << " stars
" << endl;

time(&start);

// Generate NSTARS stars in the first
database,

cout << "Generating " << NSTARS << " stars
" << endl;

time(&start);

for (i=0;i<NSTARS;i++) {
x = drand48();
y = drand48();
sigma = 0.1*drand48();
Star *star = O_NEW_PERSISTENT(Star)

(x,y,sigma,i);
}

// change to the second database



for (i=0;i<NSTARS;i++) {
x = drand48();
y = drand48();
sigma = 0.1*drand48();
star = new(db1Cont)

Star(x,y,sigma,i);
x = drand48();

y = drand48();
sigma = 0.1*drand48();
star = new(db2Cont)

Star(x,y,sigma,i);
}

time(&finish);

::dom->set_default_db("starsdb2");

for (i=0;i<NSTARS;i++) {
x = drand48();
y = drand48();
sigma = 0.1*drand48();
Star *star = O_NEW_PERSISTENT(Star)

(x,y,sigma,i);
}

time(&finish);

 

Table 4: Comparing the use of predicate searches 

Objectivity Versant 
Char pred[130];
sigma3 = 3.0*star_iterator1->get_sigma();
xlow = star_iterator1->get_x() - sigma3;
xhigh = xlow + 2.*sigma3;
ylow = star_iterator1->get_y() - sigma3;
yhigh = ylow + 2.*sigma3;

(void) sprintf(pred,"xcentre>%f &&
xcentre<%f && ycentre>%f &&
ycentre<%f",xlow,xhigh,ylow,yhigh);

if(star_iterator2.scan(cHandle2,oocRead,ooc
All,pred)) {

dmax = 0.0;
nearest = -1;
while (star_iterator2.next()) {

x = star_iterator2->get_x();
y = star_iterator2->get_y();
d = star_iterator1-

>proximity(x,y);
if (d>dmax) {

dmax = d;
nearest = star_iterator2-

>get_catalogue();
}

}
}

PPredicate pred;

sigma3 = 3.0*a[i]->get_sigma();
xlow = a[i]->get_x() - sigma3;
xhigh = xlow + 2.*sigma3;
ylow = a[i]->get_y() - sigma3;
yhigh = ylow + 2.*sigma3;

pred = PAttribute("Star::xcentre") > xlow
&&

PAttribute("Star::xcentre") < xhigh
&&

PAttribute("Star::ycentre") > ylow
&&

PAttribute("Star::ycentre") <
yhigh;

LinkVstr<Star> b =
PClassObject<Star>::Object().select("starsd
b2",FALSE,pred);

dmax = 0.0;
nearest = -1;
for(j=0;j<b.size();j++) {

x = b[j]->get_x();
y = b[j]->get_y();
d = a[i]->proximity(x,y);
if(d>dmax) {

dmax = d;
nearest = b[j]->get_catalogue();

}
}

 

Object Database Replication from CERN to Caltech Object Database Replication from CERN to Caltech Object Database Replication from CERN to Caltech Object Database Replication from CERN to Caltech     

We tested one aspect of the feasibility of wide area network (WAN)-based physics analysis by 
measuring replication performance between a database at CERN and one at Caltech. For these 
tests, an Objectivity/DB "Autonomous Partition" was created on a 2 GByte NTFS disk on one of the 
Pentium PCs at Caltech. This AP contained a replica of a database at CERN. At the same time, an 
AP was created at CERN with a replica of the same database. Then, an update of 2 kBytes was 
made every ten minutes to the database at CERN, so causing the replicas to be updated. The 
transaction times for the local and remote replications were measured over the course of one day.  



 

Figure 11: The DataReplicationOption wide area network test setup    
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Figure 12: Time to achieve an update and commit it, as a function of time of day    

The results show that during "saturated hours", when the WAN is busy, the time to commit the 
remote transaction is predictably longer than the time to commit the local transaction. On the 
other hand, when the WAN is quieter, the remote transaction takes no longer than the local 
transaction. This result demonstrates that, given enough bandwidth, databases may be 
transparently (and seamlessly) replicated from CERN to remote institutions.  



The HPSS NFS Interface The HPSS NFS Interface The HPSS NFS Interface The HPSS NFS Interface     

We tested the operation of Objectivity/DB with a federated database located on an HPSS-
managed NFS mounted file system. The HPSS machine at CACR exported a filesystem to an HP 
755 workstation, where an Objectivity/DB installation was used to create a federation consisting 
of two 0.5 MBytes "stars" databases (see the description of the "stars" application above) located 
on the mounted filesystem. The matching application was run successfully. Then the database 
bitfiles were forced off HPSS disk and into tape, and the application again run. This caused an RPC 
timeout in the Objectivity application during the restore of the databases from tape to disk. We 
then inserted a call to "ooRpcTimeout" in the application, specifying a longer wait time, and re-ran 
the application successfully.  

In addition, we tested the performance of the NFS-mounted HPSS filesystem for simple file copies. 
We copied a 300 MByte file from local disk on the HP 755 workstation into the NFS filesystem, 
and achieved a data transfer rate of ~330 kBytes/sec. This results shows that the system is 
reliable for large files, the data transfer rate approximating the available LAN bandwidth between 
the HP 755 and the HPSS server machine. 

The CMS H2 Test Beam OO Prototype The CMS H2 Test Beam OO Prototype The CMS H2 Test Beam OO Prototype The CMS H2 Test Beam OO Prototype     

We ported the data reconstruction and analysis software for the H2 detector test beam at CERN to 
Windows/NT. This task involved acquiring Rogue Wave Tools.h++ and installing an Objectivity/DB 
database of approximately 500 MBytes of raw data from CERN, previously copied across the WAN 
to Caltech. After initial tests with the software, it was decided to redirect all activities towards the 
CMSOO prototype described later. 

 

Figure Figure Figure Figure 13131313: Showing the layout of the H2 Test Beam database, as installed on Windows NT at : Showing the layout of the H2 Test Beam database, as installed on Windows NT at : Showing the layout of the H2 Test Beam database, as installed on Windows NT at : Showing the layout of the H2 Test Beam database, as installed on Windows NT at 
CaltechCaltechCaltechCaltech    



  

CMSOO CMSOO CMSOO CMSOO ---- Tracker, ECAL and HCAL software prototype  Tracker, ECAL and HCAL software prototype  Tracker, ECAL and HCAL software prototype  Tracker, ECAL and HCAL software prototype     

In 1998, CMS Physicists had produced several sub-detector orientated OO prototypes (e.g. for the 
Tracker, ECAL and HCAL detectors). These codes were mainly written in C++, occasionally with 
some Fortran, but without persistent objects. We took these codes and integrated them into an 
overall structure, redesigning and restructuring them where necessary. We then added persistency 
to the relevant classes, using the Objectivity/DB API. We then reviewed the code and its structure 
for speed, performance and effectiveness of the algorithms, and added global reconstruction 
aspects. These included track/ECAL cluster matching, jet finding and event tagging.  

Concurrently, Caltech/HEP submitted a successful proposal to NPACI (The National Partnership 
for Advanced Computing Infrastructure) that asked for an Exemplar allocation to generate 
~1,000,000 fully-simulated multi-jet QCD events. Event simulation has progressed since then, to 
an accumulated total of ~1 TBytes of data (~1,000,000 events), stored in HPSS. The events were 
used as a copious source of "raw" LHC data for processing by the "CMSOO" application and 
population of the GIOD database.  

 

Figure Figure Figure Figure 14141414: The class schema diagram for the track and calorimeter CMSOO prototype: The class schema diagram for the track and calorimeter CMSOO prototype: The class schema diagram for the track and calorimeter CMSOO prototype: The class schema diagram for the track and calorimeter CMSOO prototype    

 



 

Figure 15: Showing the TAG data object and its relation to the Event classes 

To process the simulated multi-jet data, the procedure used is to read the raw data files using the 
"ooZebra" utility developed in CMS, to create raw data objects (Tracker, Muon hit maps, ECAL, 
HCAL energy maps) for each event, and then to store these objects in the Objectivity database. The 
raw objects are used to reconstruct tracks and energy cluster objects. These new objects are in 
turn stored in the database. Finally, pattern matching algorithms create "physics" objects like 
Jets, Photons, Electrons, and Missing ET, which are subsequently stored in the database as 
"analysis objects".  



 

Figure 16: The procedure used in the CMSOO application to find, fit, and make persistent tracks. 
The method is a Kalman Filter and is based on work by Sijin Qian and Irwin Gaines.    

Most of the processing to convert the raw data into objects in the database was carried out on the 
Exemplar, and on the HP Kayak workstation. At one point, a substantial number of events were 
processed on the PCSF Windows NT cluster at CERN. The configuration for this processing is 
shown below: 



 

Figure 17: CMSOO processing using the PCSF cluster at CERN. The raw FZ files were shipped to 
CERN, and individually staged in to each of the PCSF machines. Each machine then processed the 
raw data into objects made persistent in an Objectivity database on a Sun.    

Once the Object database federation had been populated on the Sun server (Shift20), the 
individual database files were ftp’ed from CERN to Caltech across the TransAtlantic link (at that 
time of capicity 4 Mbits/second). A total of ~35 Gbytes of files were moved in three days. 

 

Figure 18: Showing the traffic on the HEP TransAtlantic link around the period (14/10/98) when 
CMSOO files were being ftp'ed from CERN to Caltech. The blue curve shows the total traffic from 
CERN to the USA. The CMSOO traffic can be seen as the load from Thursday until Saturday.    

Accessing ODBMS data from Java Accessing ODBMS data from Java Accessing ODBMS data from Java Accessing ODBMS data from Java     

The Java API supplied with Objectivity/DB has proven to be an extremely convenient and powerful 
means of accessing event object data (created using the C++ CMSOO application) in the CMSOO 
database.  

Initially, we developed 2D viewers to add us in the debugging of the CMSOO track reconstruction 
code. 



 

Figure Figure Figure Figure 19191919: Showing an early prototype viewer for the CMS tracker, with accumulated “hits” from : Showing an early prototype viewer for the CMS tracker, with accumulated “hits” from : Showing an early prototype viewer for the CMS tracker, with accumulated “hits” from : Showing an early prototype viewer for the CMS tracker, with accumulated “hits” from 
many events.many events.many events.many events.    

 

 

Figure Figure Figure Figure 20202020: The prototype 2D event viewer, with tracker and ECAL information, and fitted tr: The prototype 2D event viewer, with tracker and ECAL information, and fitted tr: The prototype 2D event viewer, with tracker and ECAL information, and fitted tr: The prototype 2D event viewer, with tracker and ECAL information, and fitted tracksacksacksacks    



During the course of these early developments, we uncovered several restrictions with the Java 
binding to the database:  

• = Impossible to access C++ objects from Java which contain array data members: these must be 
converted to Objectivity VArrays.  

• = Class names cannot contain an underscore character. Found to be a problem in the beta 
version of the Java binding.  

• = The "shapes" of the Java and C++ objects must match exactly, otherwise access from Java 
fails.  

• = The Applet's paint method in principle requires the geometry, hits and tracks to be re-drawn. 
We don't want to keep opening the database to re-access the information required to re-draw, 
so we need to define another method. This has been resolved by defining an off-screen image 
buffer, and drawing exclusively in that.  

 

We developed a 3D event viewer, which directly fetches the CMS detector geometry, raw data, 
reconstructed data, and analysis data, all as objects from the database. A screen capture from the 
event viewer is shown in the Figure below.  

 

FFFFigure igure igure igure 21212121: The JFC/Java3D: The JFC/Java3D: The JFC/Java3D: The JFC/Java3D----based GIOD Event viewerbased GIOD Event viewerbased GIOD Event viewerbased GIOD Event viewer    

In addition, we have used SLAC's Java Analysis Studio (JAS) software, which offers a set of 
histogramming and fitting widgets, as well as various foreign data interface modules (DIMs). Using 
JAS, we constructed a DIM for Objectivity, and a simple di-Jet analysis routine shown below: 

 

 



Table 5: The simple di-jet analysis procedure used in JAS for the CMSOO data 

public void processEvent(final EventData d) {

final CMSEventData data = (CMSEventData) d;

final double ET_THRESHOLD = 15.0;

Jet jets[] = new Jet[2];

Iterator jetItr = (Iterator) data.getObject("Jet");

if(jetItr == null) return;

int nJets = 0;

double sumET = 0.;

FourVectorRecObj sum4v = new FourVectorRecObj(0.,0.,0.,0.);

while(jetItr.hasMoreElements()) {

Jet jet = (Jet) jetItr.nextElement();

sum4v.add(jet);

double jetET = jet.ET();

sumET += jetET;

if(jetET > ET_THRESHOLD) {

if(nJets <= 1) {

jets[nJets] = jet;

nJets++;

}

}

}

njetHist.fill( nJets );

if(nJets >= 2) { // dijet event!

FourVectorRecObj dijet4v = jets[0];

dijet4v.add( jets[1] );

massHist.fill( dijet4v.get_mass() );

sumetHist.fill( sumET );

missetHist.fill( sum4v.pt() );

et1vset2Hist.fill( jets[0].ET(), jets[1].ET() );

}

} 

 

With the analysis routine, we were able to iterate over all events in the CMSOO database, apply 
cuts, and plot the di-jet mass spectrum for the surviving events. The following Figure shows the 
JAS di-jet mass histogram.  



 

Figure Figure Figure Figure 22222222: : Showing SLAC's Java Analysis Studio with the GIOD Objectivity DIM, used to analyse a : : Showing SLAC's Java Analysis Studio with the GIOD Objectivity DIM, used to analyse a : : Showing SLAC's Java Analysis Studio with the GIOD Objectivity DIM, used to analyse a : : Showing SLAC's Java Analysis Studio with the GIOD Objectivity DIM, used to analyse a 
set of diset of diset of diset of di----jjjjet events from the CMSOO database, and plot the diet events from the CMSOO database, and plot the diet events from the CMSOO database, and plot the diet events from the CMSOO database, and plot the di----jet mass spectrum.jet mass spectrum.jet mass spectrum.jet mass spectrum.    

Pure Java Track Fitter 

We have developed a demonstration track fitting code in Java, that efficiently finds and fits tracks 
with Pt > 1 GeV in the CMS tracker. The code identifies good tracks at a rate of ~ 1 per second, for 
a total set of ~3000 digitisings in the tracker. This compares favourably with the C++/Fortran 
Kalman Filter code we use in our production reconstruction code (which also operates at about 1 
track per second, but which is a considerably more compute intensive procedure). 

The image below shows a single di-jet event in the CMS calorimeter, with the reconstructed tracks 
from the Kalman Filter in white/grey, and the reconstructed tracks from the Java fitter in orange. 
We have tested both codes on simulated single muon event samples at energies of 1, 2, 5, 20 and 
50 GeV. Single track finding efficiencies for both codes on these events is excellent (a high 
statistics study is planned). 



 

Figure 23: The Java track fitter: in the event shown there are 27 tracks found by the Kalman Filter, 
and 58 found by the Java fitter    

Fitting technique 
• = The tracker digits are fetched from the Objectivity database as a set of space points 

(or hits) in (r,phi,z) with associated errors. 
• = The hits are arranged in layers corresponding to the Tracker detector layers. 
• = Starting from the outermost layers of the detector, a pair of seed hits are chosen that 

line up roughly with the centre of CMS. 
• = Working from the innermost layer of the detector, a third seed hit is chosen that, when 

coupled with the two initial hits, can be fitted to a helix with a radius corresponding to 
a momentum of at least 1 GeV, the fit giving an acceptably small Chi squared. 

• = Using the candidate track fit, and working from the innermost layer of the detector, 
the track is extrapolated to each layer of the detector it intersects, in order to build a 
list of candidate hits on the track.  

• = At each intersected layer, the closest hit is determined, and the hit added to the track 
list if its Chi squared distance to the track intersection point is below a certain value 

• = If an acceptable hit is found on the intersected layer, then the Chi squared is 
accumulated for the track 

• = If the accumulated Chi squared of the track at any time exceeds a certain value, then 
it is invalidated, and a new trio of seed hits sought 

• = After the candidate track has been extrapolated through the detector, it is rejected if 
it does not meet the following conditions:  

o it has at least three well-measured hits in its track list (i.e. hits from Stereo or 
Pixel layers) 



o it has at least six hits in total in its track list 

o it's Chi squared is below a certain value 

• = If the track meets these criteria, then the innermost three well-measured hits are 
used in a new three point fit to a helix. This fit yields the parameters of the helix, and a 
Chi squared. The track is only accepted if this Chi squared, in turn, is less than a 
certain value. 

• = For an accepted track, all hits in the track list are marked as "used", and fitting 
resumes for further tracks with a new three point seed. 

• = Once all tracker layers have been iterated over, or once all hits have been marked 
"used", fitting terminates. 

Note that, unlike the Kalman Filter method, this fitting procedure does not give the covariance 
matrix for the fitted track parameters, nor does it take into account multiple scattering in the 
detector, not does it use all points on the track in the final fit. These deficiencies will be addressed 
in further work. 

Further work planned on the Java Fitter and Reconstruction 

Using this fitter as a basis, we had plans to develop a full Kalman Filter fitter in Java. This would 
have been fully integrated in our JavaCMS event viewing applet, allowing the user to interactively 
refit existing tracks, or fit new tracks. The new fitter would also have been integated in a 
completely Java-based reconstruction tool for our CMSOO database.  

ATM traffic from database clients ATM traffic from database clients ATM traffic from database clients ATM traffic from database clients     
Recent work in GIOD has been focussing on the network-related aspects of using the CMSOO 
database. Tests have begun which involve distributing a number of database client processes on 
the Exemplar, and having them communicate with a database hosted remotely across a dedicated 
ATM fiber link on an HP C200 workstation. We have measured the I/O throughput to the disk 
containing the database files, the I/O traffic on the ATM network, and the load on the database 
host processor during the tests. At the time of writing, the test results are still being interpreted, 
but an initial clear conclusion is that the Objectivity database lock and page servers play 
important roles in governing the maximum throughput of the system.  

Multiple client tests 

The system setup is shown below. The HP/UX system is a C200C200C200C200, running Objectivity v5.0. The data 
disk is a narrow SCSI device, rated at ~8 MBytes/sec. The ATM is on dedicated fibre (no other 
users), running at 155 Mbits/sec. 

 



 

Figure Figure Figure Figure 24242424: The layout of the system for the ATM tests: The layout of the system for the ATM tests: The layout of the system for the ATM tests: The layout of the system for the ATM tests    

Test 1 : Transfer of ~40 large files using FTP 

 

Figure Figure Figure Figure 25252525: FTP of a large number of large files from the Exemplar to the C200 Disk.: FTP of a large number of large files from the Exemplar to the C200 Disk.: FTP of a large number of large files from the Exemplar to the C200 Disk.: FTP of a large number of large files from the Exemplar to the C200 Disk.    



Remarks:  

• = The "Load Factor" is the value obtained using the "uptime" command on the C200 
• = The disk rate is obtained using the "du -ks" command on the C200 and dividing by the 

elapsed time  

• = Note that the initial rate obtained of ~12 MBytes/sec on both the ATM and the disk 
was confirmed by the ftp utility, which reported 11.5 MBytes/sec for the second file 
transferred. 

• = Why this exceeds the nominal maximum rate for the SCSI disk is not understood. 

• = The oscillation in rates at the start of the transfers is not understood. 

• = The ATM rates are obtained by using the "atmmgr 0 show -c" command on the 
Exemplar to obtain the cell count in and out of the adapter, using a cell size of 47 
bytes, and dividing by the elapsed time.  

• = This value of the cell size is confirmed for this payload by measuring the cell count for 
the ftp of a file of known size in bytes. 

 

 

Test 2: CMS Event Reconstruction in one processor. 

 

Figure Figure Figure Figure 26262626: Network traffic for a single Reconstruction client: Network traffic for a single Reconstruction client: Network traffic for a single Reconstruction client: Network traffic for a single Reconstruction client 

 

Remarks: 

 The traffic destined for the database is exclusively object data, and consists of "raw" event 
data (like hit maps), "reconstructed" objects (like tracks) and analysis objects (like jets), and 
also small "tag" objects. 



 Note that the Reconstruction program processes 12 separate events: hence the 12 yellow 
spikes in input ATM traffic in the graph. 

 Note that the write rate to the disk is always lower than the input rate from the ATM.  
 There is significant traffic towardstowardstowardstowards the Reconstruction client, particularly when the client 

starts up: this is the object schema information sent by the server to the client. 

 

 There is a lot of traffic in both directions on the ATM, but a small fraction of it ends up as 
objects in the database.  

It is not understood what the excess traffic consists of. 

 The Load Factor on the C200 seems to fluctuate oddly (compare with the very smooth 
behaviour during the ftp transfer).  

The cause of this is not understood. Perhaps either the AMS or LockServer ... requires further 
tests. 

 
 
Test 3: CMS Event Reconstruction in 16 processors. 

 

Figure Figure Figure Figure 27272727: Network traffic caused by 16 simultaneous Reconstruction clients: Network traffic caused by 16 simultaneous Reconstruction clients: Network traffic caused by 16 simultaneous Reconstruction clients: Network traffic caused by 16 simultaneous Reconstruction clients 

 

Remarks: 

 Again, very high traffic rates towardstowardstowardstowards the clients when they start up. 
 Note that the Load Factor is now ~1.5 on the machine (cf ~1.0 for a single client). 

ATM and TCP/IP Characteristics of the Database Client traffic 

The unit of transfer between the TCP software on two machines is called a segment. Usually, each 
segment travels across the network in a single IP datagram. Each segment is divided into two 
parts, a TCP header followed by data.  The organization of the header is shown below. 



     

Figure 28: TCP Header format    

The source port and destination port fields identify the end points of the connection.  The 
sequence number identifies the first data octet in this segment. The exception is that when SYN is 
present, the sequence number is the initial sequence number (ISN) and the first data octet is 
ISN+1. If the ACK control bit is set, the acknowledgement field contains the value of the next 
sequence number the sender of the segment is expecting to receive. Note that the sequence 
number refers to the stream flowing in the same direction as the segment, while the 
acknowledgement number refers to the stream flowing in the opposite direction as the segment.  
The TCP Data Offset (also called Header Length) tells how many 32-bit words are contained in the 
TCP header. This information is needed because the Options field has variable length, so the 
header length is variable too.  Reserved has 6 bits and must be zero. They are for future use.  Some 
segments carry only an acknowledgement while some carry data. Others carry requests to 
establish or close a connection. TCP uses the six 1-bit flags to determine the purpose and 
contents of the segment. URG is set to 1 if the Urgent pointer is used to indicate a byte offset from 
the current sequence number at which urgent data are to be found. It's used in interrupt 
messages. ACK bit is set to 1 if the acknowledgement field is valid. PSH bit causes the remote TCP 
layer to pass this segment immediately to the application layer without waiting to form a larger 
buffer. The SYN bit is used to establish connections. The FIN bit is used to release a connection. It 
specifies that the sender has no more data. After closing a connection, a process may continue to 
receive data indefinitely. The RST bit is used to reset a connection. It indicates that an error has 
occurred and the connection should be forcibly closed.  A 16-bit field Window (also called sliding 
window) in the TCP header tells how many bytes may be sent beyond the byte acknowledged. It's 
used in flow control.  Like Acknowledgement, a checksum is provided for reliability. The checksum 
algorithm is simply to add up all the data, regarded as 16-bit words, and then to take the 1's 
complement of the sum. 

Throughput 

By drawing throughput distribution graphs, we can observe and analyze network traffic using 
statistical methods.  If packets (often from more than one segment) or in this case an ATM cell is b 
bytes long and the time it takes the packets to traverse from one end to the other is T seconds, 
then 

    

For the dedicated ATM line from the C200 to the Exemplar, the value b is about 47.625±0.002 
bytes per cell (obtained with repeated FTP transfers of about 500 Megabytes of data).  This 
measure is the direct result from the fact that one ACK can acknowledge more than one segment.   



All measurements on the C200 are conducted with a c-shell script which polls the network 
periodically with the tool 'atmmgr'.  The command 'atmmgr' gives a direct packet count on the 
ATM line at any given moment.  Disk measurements are currently conducted with the 'du' 
command.  Since 'du' takes about 3 milliseconds on the C200, the measured disk rate and the 
ATM rates are offset from each other by that amount.  This is insignificant, however, compared to 
the polling period (1 to 2 seconds).  

Network Monitoring Tool: 

We implemented a new tool, termed 'Monitor', to compute and display more meaningful 
information from the raw data collected by a program called 'tcpdump'.   

Packet capturing can be used for much more detailed analysis of network data.  There is a really 
nice public domain packet capture tool called 'tcpdump.' This tool will generate a gzipped tar ball 
of raw data, which can then be reconstructed (with an appropriate script or a program).  For 
instance, we can calculate the precise elapsed time, bytes/segments  sent and received, 
retransmissions, round trip times, window advertisements,  instantaneous throughput, precise 
measurement of the RTT, etc.   

There are distinct advantages of having both the instantaneous throughput as well as the rough 
estimates made by simply counting the packet numbers received.  By drawing throughput 
distribution graphs for both, we can observe and analyze network traffic using statistical methods.  
If packets (often from more than one segment) are b bytes long and the round-trip time (RTT) is T 
seconds, then this measure is the direct result from the fact that one ACK can acknowledge more 
than one segment, or throughput = b/ � T.  The other, more precise measure is the 
"instantaneous throughput". It is defined as the size of the segment that caused it divided by the 
time elapsed since the previous segment arrived or was sent. 

Packet Formats 

IP (RFC 791) 

  

                    0                   1                   2                   3 

                    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

                   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

                   |Version|  IHL  |Type of Service|          Total Length         | 

                   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

                   |         Identification        |Flags|     Fragment Offset     | 

                   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

                   |  Time to Live |    Protocol   |        Header Checksum        | 

                   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

                   |                         Source Address                        | 

                   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

                   |                       Destination Address                     | 

                   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

                   |             Options                           |    Padding    |  

                   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

  



  

TCP (RFC 793) 

  

                    0                   1                   2                   3 

                    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

                   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

                   |          Source Port          |        Destination Port       | 

                   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

                   |                         Sequence Number                       | 

                   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

                   |                      Acknowledgement Number                   | 

                   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

                   |Offset |  Reserver |U|A|P|R|S|F|             Window            | 

                   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

                   |           Checksum            |         Urgent Pointer        | 

                   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

                   |                  Options                      |    Padding    | 

                   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

                   |                              Data                             | 

                   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

The “Monitor” java application for analyzing tcpdump output 
 
'Monitor' generates graphs from the raw data collected by tcpdump. 

• = Time Sequence Graph - shows packets of segments sent and ACKs returned as a  function 
of time (packet size vs. time).  

• = Instantaneous Throughput - shows the instantaneous (averaged over a few segments) 
throughput of the connection as a function of time. 

• = Autocovariace -  shows autocovariance coefficient versus lag graph. 
• = Round Trip Times (not yet implemented) - shows the round trip times for the ACKs as a 

function of time. 
'Monitor' is implemented in Java JDK 1.1.  More specifically, the interface is written with the AWT 
widget set.  'Monitor' is implemented in one main class and four sub classes, listed in hierarchal 
order. 

Monitor.javaMonitor.javaMonitor.javaMonitor.java  - The main class which reads a data file, calculates and plot the statistics(described 
above) in time series, histogram, and zoomed.  It accept the standard tcpdump data file. 

FigureFrame.javaFigureFrame.javaFigureFrame.javaFigureFrame.java - The class implementing the graphics frame.  It draw the axis, scales, titles, 
labels and coordinates around its figure, with a GraphArea object held in the center. It can also 
generate subfigures of histogram, autocovariance and zoom in. 

GraphArea.java GraphArea.java GraphArea.java GraphArea.java ----    The class which implements the graphic area where the plots take place. 

MyDialogBox.java MyDialogBox.java MyDialogBox.java MyDialogBox.java ----    This class is used to implement the dialog box for selecting the data files.  The 
Java Tutorial says that: "Because no API currently exists to let applets find the window they're 



running in, applets generally can't use dialogs."  MyDialogBox use Frame as Dialog, and keeps a 
handle of its parent applet in "parentApplet" for input parameters and actions 

AboutBox.javaAboutBox.javaAboutBox.javaAboutBox.java - The class implementing the about/help dialog box.  It simply provides basic 
documentation for the end user. 

Shown below are screen shots from Monitor. 

 

Figure 29: Screen shot from the "Monitor" program    



 

Figure 30: Screen shot from the "Monitor" program 

 FTP Tests through the HP-C200. 

The first graph shows initial FTP tests with the smaller (20 Kbytes) packet size.  Note that the disk 
rates can become negative due to the resizing of the cluster size.  Initially a larger cluster (in 256k 
inodes) is reserved for the data, and then later  resized to reflect the actual amount of data being 
stored.  

 

Figure 31: Traffic profile for the FTP of 21 files with the small packet size    



 FTP performance through this ATM is fairly high, with an average transfer rate of about .  The 
spiking behavior is due to both the TCP protocol and the behavior of the operating system.  Using 
small  packets can adversely affect single workstation-to-server file transfer speed. To enhance 
performance, the use of larger packet sizes can increase throughput dramatically.  However, the 
drawback is that stagnation and network overloading can occur more easily when multiple clients 
are interacting with the server.  The following graph shows the FTP tests repeated with the larger 
packet size (200 Kbytes). 

 

Figure 32: Traffic profile for the FTP transfer of 21 files with a large packet size    

As shown above, the larger packet size improved downloading speed by about 30%.  This 
optimization, however, has less of an effect in terms of running GIOD processes, since Objectivity 
divides its processes into segments which are smaller than 20 Kbytes. 

Reconstruction with N clients 

Reconstruction tests were performed for 1, 2, 4, 8, 16, and 32 jobs.  Typical graphs are shown 
below. 



 

Figure 33: With 8 simultaneous Reconstruction clients    

 

Figure 34: With 16 simultaneous Reconstruction clients    



 

Figure 35: With 32 simultaneous Reconstruction clients    

We note that the number of spikes increase roughly linearly with a larger number of clients. The 
receiver gives a variable size sliding window in the acknowledgment packet. Sliding window 
specifies how much new data the receiver could accept from the sender and makes it possible for 
the sender to send multiple segments before an acknowledgment arrives. If multiple segments are 
received at a node before an acknowledgement is ready to be sent, it is possible to acknowledge 
just the last segment received, so reducing the need to acknowledge every segment. This allows 
higher throughput and more efficient use of the bandwidth.  Sliding window reflects the buffer 
available at the receiver. If the window values are often low or reach zero in the middle of data 
transfer, a device does not have enough memory allocated to buffers.  A receiver may validly 
reduce the window size to zero to stop the flow of data completely, that is, to invoke flow control.  
The flow control causes the spiking behavior exhibited in the graphs above.  With a greater 
number of simultaneous jobs, the ATM line has insufficient buffering, which in turn causes more 
spiking.  The condensed spikes actually increase efficiency in this case.  



Congestion / Staggering the start of Data Processing 

 

Figure 36: New Graph for Reconstruction 16 after staggering the start of processing.    

Note that at the beginning of the reconstructions (original graph), the outgoing rate through the 
ATM line increases exponentially.  This is caused by the simultaneous fetching of a list of 
reconstruction jobs by the clients.  While this is perfectly acceptable (i.e., below saturation point) 
on our dedicated ATM line, it could pose major problems on slower networks.  In the new graph 
above, the initial start of the individual reconstruction processes are staggered by delaying the 
start of the Nth process by 2xN seconds.  We see that, the result is that the ATM line is less 
saturated.  In practice, of course, clients are unlikely to be fetching jobs all at once.  In such a 
case, normal congestion control uses the sliding window to provide for flow control within the 
network between them, but the problem comes when the network between the nodes is 
congested. If the sender has no knowledge of this, it will send the maximum amount of data 
allowed by the receiving node and in doing so, cause even more congestion. To overcome this, a 
mechanism called "slow start" is used. This keeps account of the unacknowledged segments in 
what is referred to as the congestion window. At the start of a connection the value of the 
congestion window is one segment. If the first segment is acknowledged, the window is then 
increased in size; if retransmission occurs, the congestion window is then decreased in size. So 
the congestion window keeps track of the state of the links between two nodes so as not to 
overload them.  

FTP Tests with the San DiegoSuper Computer Centre (SDSC)  

The San Diego SP2 is connected to the Exemplar via a combination of ATM, FDDI, and wide area 
Ethernet. The configuration for our tests is show schematically below: 



 

Figure 37: The network and machine configuration for the GIOD WAN tests with SDSC    

The route from the SDSC SP2 to the CACR Exemplar is shown below. 

1  tigerfish.sdsc.edu (132.249.40.11)  1 ms  1 ms  1 ms 

 2  medusa.sdsc.edu (132.249.30.10)  1 ms  1 ms  1 ms 

 3  SDSC-campus-ATM1.calren2.net (198.32.248.62)  2 ms  2 ms  2 ms 

 4  USC-SDSC.calren2.net (198.32.248.33)  6 ms  5 ms  6 ms 

 5  UCI-USC.POS.calren2.net (198.32.248.17)  7 ms  7 ms  7 ms 

 6  UCR-UCI.POS.calren2.net (198.32.248.13)  8 ms  15 ms  8 ms 

 7  CIT-UCR.POS.calren2.net (198.32.248.9)  10 ms  10 ms  10 ms 

 8  10.26.254.253 (10.26.254.253)  10 ms  10 ms  10 ms 

 9  10.26.1.2 (10.26.1.2)  10 ms  10 ms  10 ms 

10  SFL-border.dmz.caltech.edu (192.12.19.252)  11 ms  11 ms  11 ms 

11  pengine-145.cacr.caltech.edu (131.215.145.250)  11 ms  11 ms  11 ms 

12    neptune.caltech.edu (131.215.145.111)  12 ms  11 ms  12 ms       

Since the end cable to the San Diego machine is FDDI not ATM, a different command, 'netstat -v 
FDDI' was used in conjunction with awk to extract the packet count.  Roughly 553 bytes belong to 
each FDDI packet. 



 

Figure 38: FTP test with SDSC    

This graph shows extremely even and ordered behavior.  Unlike the ATM, The FDDI line from San 
Diego is symmetrical and has more even packet arrival times.   

More FTP Tests 

 

Figure 39: Using two FTP streams simultaneously in an effort to saturate the WAN    



 

The massive FTP test was conducted with two simultaneous pipes.  It's interesting to note that the 
spiking behavior is identical to the same tests with only one pipe. 



CMSOO Reconstruction to a database at SDSC 

 

Figure 40: Showing the ATM traffic for CMSOO running on the Exemplar, writing to a database on 
the SP2 at SDSC.    

The single client CMSOO test to San Diego shows excellent network performance (peaking at 5.5 
Mbytes/second in the WAN), which is comparable with the performance on the dedicated ATM 
test bed here at Caltech. 

Conclusions from the detailed ATM tests 

One of the key elements which can be altered easily is the packet size limit.  In broadband 
networks such as ATM, it is often claimed that using large packets results in greater efficiency.    
However, during congestion periods, large packets have a higher probability of being lost, which 
results in a drop in overall throughput.  For instance, in a study of the effects of packet size on 
overall throughput under various network loads throughput degradations were observed for large 
packet sizes during periods of congestion. In such cases, reducing the packet size can avoid can avoid can avoid can avoid 
excessive packet loss and will, in turn, improve throughput performanceexcessive packet loss and will, in turn, improve throughput performanceexcessive packet loss and will, in turn, improve throughput performanceexcessive packet loss and will, in turn, improve throughput performance.  It would be perhaps 
useful if the packet size could be changed dynamically to adapt to prevailing WAN conditions.   

MONARC related workMONARC related workMONARC related workMONARC related work        

Tiered distributed system architecture 
GIOD maintained very close relations with the MONARC project from the latter’s inception. In 
particular, the modeling work already begun in GIOD (see the sections on SoDA and ModNet 
below) was continued in MONARC, and further developed with the provision of a more appropriate 
modeling tool written in Java. The GIOD studies assumed a probable architecture for data 
distribution at the LHC that is depicted in the schematic below: 



 
Figure Figure Figure Figure 41414141: A possible data distri: A possible data distri: A possible data distri: A possible data distribution strategy for one of the LHC Experimentsbution strategy for one of the LHC Experimentsbution strategy for one of the LHC Experimentsbution strategy for one of the LHC Experiments    

 

Modelling the “Average Physicist” using ModNet 

In an attempt to understand what the network demands might be to support end user physicists 
working with the distributed system in 2005, a model was proposed (by Stu Loken) of what a 
typical physicist might do during the course of a day to impact the network. These tasks are 
summarized in the following table:  

Table 6: Network-related tasks of an average physicist in 2005 

 

Task Hours Per Day KBits/sec Total 
Mbits  

Conferencing 2 512 4,000 
"Coffee Room" 0.5  2,000  4,000 
Seminar 0.4 1,000  1,600 
Remote Sessions 2 256  4,000 
Analysis, Including Transfer in background 4 700  10,000 
Electronic Notebooks 2 100 800 
Papers: 20 Papers and Documents, Including Links 2 100 800 
E-Mail: 500 Multimedia Messages 2 50  400 
Interactive Virtual Reality 0.5 2,000 4,000 
TOTAL MBits Transferred Per Day     30,000  
Average Mbps During a Ten Hour Day      0.75  



The simple sum of traffic rates gives rise to an average of 0.75 Mbitse/second throughout the 
working day. The modelling aim is to verify whether the tasks above do indeed give rise to network 
traffic averaging 0.75 Mbps, and to show the traffic fluctuations over the course of the day. We 
would also like to model a group of physicists using the above data, and see what the network 
implications are. 

Setting up the ModelSetting up the ModelSetting up the ModelSetting up the Model 

To model this user with the ModNet tool, we set up tasks with the same names, which will execute 
at the required frequency. We choose a work day as being 10 hours long. To model the tasks, we 
examine what happens each second, when the user is engaged on that task. For example, the 
"Conferencing" task involves sending and receiving audio/video data. In one second, we say that 
512 KBits of data are received, and in the next second 512 KBits of data are sent (this should 
probably be changed to an 80:20 rule in favour of data reception, but for the moment we keep it 
simple). The task in ModNet looks like this: 

 

Figure Figure Figure Figure 42424242: Selecting the task type in ModNet: Selecting the task type in ModNet: Selecting the task type in ModNet: Selecting the task type in ModNet    

The two task steps "Receive MBONE Audio/Video data" and "Send MBONE Audio/Video data" are 
defined in terms of data size and location: 



 

Figure Figure Figure Figure 43434343: Defining the task steps in ModNet: Defining the task steps in ModNet: Defining the task steps in ModNet: Defining the task steps in ModNet    

Note that the data comes from "Regional Centre", and the size of the data is specified in units of 
KBytes. 

The physicist is "Conferencing" for 2 hours every day. There are 7200 seconds in 2 hours, so the 
above task must be invoked 7200 times over the course of the day. (We are assuming that the 
physicist is multiplexing between all the different tasks, at the rate specified by Loken's table). 

The user works on a single workstation, which is connected to the "Regional Centre" via a network 
of semi-infinite bandwidth. The completed network model looks like this: 

 

Figure Figure Figure Figure 44444444: The simple network system for the ModNet simulation: The simple network system for the ModNet simulation: The simple network system for the ModNet simulation: The simple network system for the ModNet simulation    

Modelling resultsModelling resultsModelling resultsModelling results 

A graph of the network traffic between the physicist's workstation and the "Regional Centre" 
shows the expected average rate of ~0.72 Mbps. (Note the spikiness of the traffic, peaking at 2.05 
Mbps and with a low of 0.09 Mbps). 



 

Figure Figure Figure Figure 45454545: Traffic profile measured in the simulation: Traffic profile measured in the simulation: Traffic profile measured in the simulation: Traffic profile measured in the simulation    

Now if we modify the network so that it runs at 1 Mbps, we obtain the following traffic pattern: 

 

Figure 46: Traffic profile when the network capacity is limited to 1 Mbps 

SoDASoDASoDASoDA    

The modelling and simulation of distributed computing systems has been investigated in CERN's 
Physics Data Processing group previously and a framework for the Simulation of Distributed 
Architectures (SoDA) has been developed. SoDA has been predominantly used for the simulation of 
local-scale distributed systems with a deterministic workload profile. The present studies should 
investigate if SoDA is also suited to address particular characteristics of wide area networks such 
as:  

• = Hierarchical composition of network constituents: logical and physical topology 

• = Indirect characterisation of the network load: Tasks - Users - Workgroups – Institutes 

• = Stochastic modelling of the network load over certain periods of time (working day) 



The problem naturally suggests to separate the specification of users (who issue the workload) 
and network resources (which handle the workload). We will address both aspects separately in 
the following. 

Specification of the Users 

The workload is understood as the entirety of data transfer requests that are addressed to a 
(dedicated) wide area network. The current model understands the total workload as mutual data 
exchanges among physics institutes, e.g. Caltech and CERN. A particular data exchange results 
thereby from a wide area utilisation profile of individual physicists. In the case of the given model, 
such an individual utilisation profile is characterised by 'wide area network tasks of an average 
physicist in 2005' as proposed by Stu Loken. A task represents a wide area network data transfer 
/ session of an individual physicists related to a certain purpose.  

As a preliminary heuristic, the total data transmission requirements of a task of limited duration 
are characterised either through an upper bandwidth or a volume constraint. The execution of a 
task is limited to a certain period per working day (start daytime and stop daytime). The execution 
of the task can be sparsed over several lots per day (lots per day). Each lot accounts for an equal 
share of a the total requirements. The lots are uniformly distributed over the considered period of a 
day. If some requirement can not be fulfilled or can be only fulfilled with delay (i.e. time that 
exceeded stop daytime), the respective task collects statistics on this. 

We have explained how tasks serve to model the behaviour of an 'average physicist'. In order to 
extrapolate the behaviour of multiple users, a workgroup is conceived as a set of users, an 
institute in turn is understood as a set of workgroups.The total workload issued per institute is 
thus the sum/overlap of individual workloads induced by workgroups and users.  

 

Figure Figure Figure Figure 47474747: The component model for entities that issue/determine the workload. Components of : The component model for entities that issue/determine the workload. Components of : The component model for entities that issue/determine the workload. Components of : The component model for entities that issue/determine the workload. Components of 
this category are depicted red.this category are depicted red.this category are depicted red.this category are depicted red.    

The structure and properties of entities who issue workloads are assumed to be static during a 
simulationl and are thus defined in terms of a SoDA component model. The aggregation of tasks to 
users, users to workgroups and workgroups to institutes is modelled through a component 
hierarchy as illustrated in figure 1. The hierarchy can be grasped as a composition of behaviour, 
i.e. the behaviour of an institute shall be composed by the behaviours of its workgroups etc.. 
Behaviour in this context is understood as the issuing of processes that represent the actual 
workload. According to the task descriptions in table 1, such behaviour can be characterised by 
the frequence, the volume of data emission and further parameters. In general, the behaviour of a 
component parameterised through its attributes. The attributes of a component instance are 
intialised at creation time through a configuration file. The following configuration file excerpt 
illustrates for example the intialisation information of the task name 'phy01cernCoffeeRoom': 



... 
[phy01cernCoffeeRoom] 
duration             =   0.5     # [h/day] 
bandwidthSend        =  1000.0   # [kbit/s] 
bandwidthReceive     =  1000.0   # [kbit/s] 
requirementsSend     =  -1.0     # [Mbit] 
requirementsReceive  =  -1.0     # [Mbit] 
granularity          =  1        # [#] 
startTimeOfDay       =  10.0     # [local time] 
stopTimeOfDay        =  11.0      # [local time] 
... 

Specification of the Network Resources 

Network resources specify all constituents that jointly carry out the requests / workloads. The 
scenario presented here is a strongly simplified image of reality. It demonstrates nevertheless how 
SoDA modelling concepts can account for particular structural characteristics of wide area 
networks. We illustrate complex entities as clouds. In the given model, one of the clouds, namely 
the Network entity, is refined and an explicit component model is defined for it. The other clouds in 
the figure are characterised by standard components taken from the SoDA library. These 
components offer a standard behaviour that can be customised to a certain degree through 
parameters. These clouds can be refined if further investigation is required, e.g. if a bottleneck is 
suspected. 

 

Figure Figure Figure Figure 48484848: Simplified scenario of a wide area network that connects High: Simplified scenario of a wide area network that connects High: Simplified scenario of a wide area network that connects High: Simplified scenario of a wide area network that connects High----Energy Physics sitesEnergy Physics sitesEnergy Physics sitesEnergy Physics sites    

The logical network topology foresees full connectivity among the sites Caltech, CERN and 
Fermilab. Every logical end-end transfer crosses the Network entity. Within the Network entity, 
end-end connections are resolved and a physical transmission path is determined according to 
routing strategies. A physical path corresponds to a series of links (e.g. Washington Cern) and 
routers (e.g . Router cernusa). 

The distinction between logical and physical structure of a wide area network, is represented by a 
hierarchy of components in the SoDA model. One component class is foreseen for each of the 
abstractions Network, Router and Link.  



 

Figure Figure Figure Figure 49494949: The component model of the wide area network indicates a hierarchical structure.: The component model of the wide area network indicates a hierarchical structure.: The component model of the wide area network indicates a hierarchical structure.: The component model of the wide area network indicates a hierarchical structure.    

Components that represent logical elements in the network featuring a high level of abstraction, 
can be found up in the hierarchy, e.g. the component instance 'wan' of class Network. The 
behaviour of this high-level component is composed by the behaviour of further sub-components 
that represent a lower level of abstraction. Theses are of class Router (e.g. instance 'cernusa') and 
of class Link (e.g. instance 'lkCernWas'). The components of class Router and Link in turn have 
their behaviour determined through a standard SoDA library component which is instanced from 
class SharedResource. 

Interaction between Users and Network Resources 

So far, entities that issue workloads and that handle workloads have been defined in component 
models. The actual workload as dynamic element is featured by the SoDA modelling concept of 
processes. The only entities that actually issue processes are those instanced from class Task. It 
should however be emphasized that the existence and intialisation information of a Task object 
depends on the hierarchy of Users - Workgroups and Institutes as discussed in the previous 
section. Thus also those objects of class User, Workgroup and Institute are in some sense 
'indirectly' characterising the workload.    

 

Figure FigureFigureFigure 50505050: The interaction between components that : The interaction between components that: The interaction between components that: The interaction between components that 

   



issue workload (red) and components the handle issue workload (red) and components the handle issue workload (red) and components the handle issue workload (red) and components the handle 
workload (blue) is modelled by processes.workload (blue) is modelled by processes.workload (blue) is modelled by processes.workload (blue) is modelled by processes.    

 

Tasks do thus issue  processes of type TaskProcess in certain intervals in simulation time. The 
length of the interval is determined by a heuristic. The heuristic calculates the value from the 
attributes 'lots per day', 'start daytime' and 'end daytime'. In addition, the heuristic foresees that no 
TaskProcess may be created until the previous instance has finished execution (see process 
model at the right hand side of figure 3). The process model illustrates that a TaskProcess process 
is split into several sub-processes that execute concurrently on all components that belong to a 
certain network path. This heuristics of concurrent execution is feasible if the TaskProcess itself 
represents a streamed data transfer. For small data drops of data issued by an interactive session, 
a different heuristic may be necessary.    

Simulation and Analysis 

The behaviour of a SoDA model can be observed either during its evaluation or after a simulation 
run. The following examples of visualised result data illustrate either way. 

 

Figure Figure Figure Figure 51515151: The utilisation of a partic: The utilisation of a partic: The utilisation of a partic: The utilisation of a particular network link over 24 hours.ular network link over 24 hours.ular network link over 24 hours.ular network link over 24 hours.    

In the above Figure one clearly recognises certain prominent, i.e. bandwidth intensive, tasks such 
as the Coffee Hour between 10 and 10:30 and the Virtual Reality session around 17:30 in the 
afternoon. The background data transfers during the night result from the Background Analysis 
task that was characterised by a 24 hours duration, small bandwidth requirements and a fine 
granularity. The averaged utilisation over the 24 hours period is in exact concordance with figures 
that can be easily calculated from the task descriptions. The ordinate in the figure indicates a 
probability [%], which results from the algorithm that generated the histogram after the simulation 
run. The y-scale can be easily (linearly) converted to utilisation figures or absolute bandwidth 
consumption. 



 

Figure Figure Figure Figure 52525252: The behaviour of a Router component as it is observed during the: The behaviour of a Router component as it is observed during the: The behaviour of a Router component as it is observed during the: The behaviour of a Router component as it is observed during the simulation of the  simulation of the  simulation of the  simulation of the 
model with the SoDA Performance Monitor.model with the SoDA Performance Monitor.model with the SoDA Performance Monitor.model with the SoDA Performance Monitor.    

The displayed segment illustrates the values of various observable attributes of the component 
during a working day such that the leftmost ticks of the graph represent the status at midnight. 
The straight black line illustrates the daytime which increases steadily up to 24 hours. In the 
simple model, a router is conceived as a backplane with limited capacity where all data 
transmissions pass through. The utilisation of this backplane is determined in intervals of 192 
simulated seconds. The value is depicted as light blue graph. The capacity of the backplane 
(represented by a standard SoDA component of type SharedResource) has been laid out to a 
reasonable value such that utilisations up to 75% could be observed for a model with 4 physicists 
in working in two different time zones. The long-term average utilisation is indicated by the purple 
line. The brown line indicates the number of concurrent streams that induce traffic on the router. 
The green line indicates the absolute usability of the resource. As a heuristic, the router 
component decreases its bandwidth capabilities in case of sustained high utilisation. This 
heuristic should meet observations of packet loss and flow control mechanisms in transport 
protocols. It was used experimentally here and is subject to change. 

Future Work 

During the exercise, it turned out that modelling the wide area scenario at hand is mainly 
determined by two aspects: 

Structural Aspect: Structure in this context addresses the transfer, allotment and distribution of 
any kind of workload from the issueing component of the workload to the handling component. In 
the current model, the complex lifecycle of the workload is characterised in terms of SoDA 
processes that 'flow' from a hierarchy of load issueing components through a hierarchy of load 
handling components (see figure 7) 

Qualitative Aspect: The qualitative aspect of a model addresses how workload is created and 
handled. This is determined by heuristics that determine the behaviour of load issuing and load-
handling components.  



 

Figure 53: The structural aspect of a model: many tasks are effected (through workload processes) 
on many resources concurrently 

It is demonstrated that the SoDA modelling approach can efficiently represent the structural 
aspect of modelling. A strategy for a continuation of this work would thus rather focus on the 
development of the qualitative aspect, i.e. the definition of heuristics. 

The applied heuristics for tasks featuring application network protocol and users (being a 
collection of tasks that are pursued concurrently), are insufficient to represent and  understand 
today's observed network behaviour with the developed model. In literature, different approaches 
have been taken to match wide area traffic with formal methods. These approaches range from a 
strict empiric proceeding to a mathematically sound formalisation with different flavours of 
distributions. Initial approaches have been started to characterise the behaviour of a user who is 
confronted with a finite 'resource' with concepts from game theory. 

In addition to heuristics for load issueing elements, it is feasible to implement non-trivial 
heuristics for workload handling components such as Router components. The observation of the 
Router component with the SoDA Performance Monitor already suggested a deterioration of its 
capability in case of lasting high utilisation. It should however be emphasised that the 
implementation of complex heuristics on both sides - the load issueing and the load handling side - 
may 'overcook' the actual problem. This may render the behaviour of the model 'incomprehensible'. 
Finally, traces of network traffic and their empirical analysis may already take a deterioration of 
certain load handling component into account. We thus suggest to develop heuristics rather on 
the origin side of the workload, i.e. heuristics for the behaviour of users and application protocols. 

Summary of the SoDA work 

The GIOD work has resulted in the construction of a large set of fully simulated events, and these 
have been used to create a large OO database. The Project has demonstrated the creation of large 
database federations, an activity that has included practical experience with a variety of 
associated problems. We have developed prototype reconstruction and analysis codes that work 
with persistent objects in the database. We have deployed facilities and database federations as 
useful testbeds for Computing Model studies in the MONARC Project.  



The project has proved to be an excellent vehicle for raising awareness of the computing 
challenges of the next generation of particle physics experiments, both within the HEP community, 
and outside in other scientific communities. 

The JavaCMS event viewer was a featured demonstration at the Internet-2 Fall Meeting 1998 in 
San Francisco. At this event we used an HP Kayak PC with FX4 graphics card as the 
demonstration platform, a machine loaned to us by Hewlett Packard. At the SuperComputing '98 
conference, the event viewer was demonstrated at the HP, iGrid, NCSA and CACR stands, on two 
HP Kayak machines dedicated by Hewlett Packard. At the Internet2 Distributed Storage 
Infrastructure workshop at Chapel Hill, NC in March 1999, the GIOD Project was a featured 
potential application. GIOD will be present at the EDUCAUSE conference in October 1999.  

This has strengthened our relationship with Internet-2, and (together with the VRVS work) is 
paving the way for CERN to become a fully-fledged Internet-2 member later in 1999.  

References References References References     

1. "Scalability to Hundreds of Clients in HEP Object Databases", Koen Holtman, Julian Bunn, 
Proc. of CHEP '98, Chicago, USA  

2. "Status Report from the Caltech/CERN/HP "GIOD" Joint Project - Globally Interconnected 
Object Databases", Julian Bunn, Harvey Newman, and Rick Wilkinson, Proc. of CHEP '98, 
Chicago, USA  

3. "GIOD - Globally Interconnected Object Databases", Julian Bunn and Harvey Newman, CACR 
Annual Report 1998  

4. "Global Initiatives Challenge Traditional Data Management Tools", Internet-2 Press Release, 
September 1998  

5. "Caltech HP Exemplar Supports Test of Data Analysis from CERN Large Hadron Collider", Julian 
Bunn and Tina Mihaly, NPACI "Online" Article, April 1998  

6. "Data Topics", Electronic News article, December 1, 1997  

7. "CERN, Caltech and HP open scientific datacenter", HPCN News Article, November 1997  

8. "Large-scale Scientific Data-analysis Center Will Address Future Computing and Data-handling 
Challenges", Hewlett Packard Press Release, November 1997  

9. Christoph von Praun: Modelling and Simulation of Wide Area Data Communications. A talk 
given at the CMS Computing Steering Board on 19/06/98. 

10. SoDA Web pages at http://wwwinfo.cern.ch/~praun/soda/Welcome.html. 

GIOD Project ParticipantsGIOD Project ParticipantsGIOD Project ParticipantsGIOD Project Participants    
James Amundson, FNAL 
Eva Arderiu-Ribera,CERN/IT/RD45 
Greg Astfalk, Hewlett Packard  
Josh Bao, Caltech/HEP  
Saskya Byerly, Caltech/HEP 
Julian Bunn, CERN/IT and Caltech  
Koen Holtman, CERN/EP  
Vincenzo Innocente, CERN/ECP  
Paul Messina, Caltech/CACR  
Shahzad Muzaffer, FNAL 
Harvey Newman, Caltech/HEP  



James Patton, Caltech/CACR 
Ruth Pordes, FNAL  
Sergey Shevchenko, Caltech/HEP  
Christoph von Praun, CERN/IT/PDP  
Rick Wilkinson, Caltech/HEP  
Roy Williams, Caltech/CACR 
 

AckowledgementsAckowledgementsAckowledgementsAckowledgements    
 
We acknowledge and thank the following individuals: 
 
Shane Davison, Objectivity (for technical support)  
Dirk Duellman, CERN/IT (for general help with Objectivity) 
Manuel Delfino, CERN/IT (for CERN/IT support as Division Leader) 
Juergen May, CERN/DG (for initial CERN/IT support as Division Leader) 
Reagan Moore, SDSC (for the SDSC WAN test accounts) 
Les Robertson, CERN/IT (for crucial technical and managerial support throughout) 
Tom Sherwin, SDSC (for implementing the SDSC WAN test configuration) 
Jamie Shiers, CERN/IT (for general help with Objectivity and RD45 liaison) 
 

Publications and PressPublications and PressPublications and PressPublications and Press    

"Scalability to Hundreds of Clients in HEP Object Databases", Koen Holtman, Julian Bunn, Proc. of 
CHEP '98, Chicago, USA 

"Status Report from the Caltech/CERN/HP "GIOD" Joint Project - Globally Interconnected Object 
Databases”, Julian Bunn, Harvey Newman, and Rick Wilkinson, Proc. of CHEP '98, Chicago, USA  

“GIOD – Globally Interconnected Object Databases”, Julian Bunn and Harvey Newman, CACR 
Annual Report 1998 

“Global Initiatives Challenge Traditional Data Management Tools”, Internet-2 Press Release, 
September 1998 

“Caltech HP Exemplar Supports Test of Data Analysis from CERN Large Hadron Collider”, Julian 
Bunn and Tina Mihaly, NPACI “Online” Article, April 1998 

“Data Topics”, Electronic News article, December 1, 1997 

“CERN, Caltech and HP open scientific datacenter”, HPCN News Article, November 1997 

“Large-scale Scientific Data-analysis Center Will Address Future Computing and Data-handling 
Challenges”, Hewlett Packard Press Release, November 1997 

 

 


	THE GIOD PROJECT: GLOBALLY INTERCONNECTED OBJECT DATABASES FOR HEP	5
	Figure 1: The 256 CPU Caltech Exemplar, the largest shared memory system in the world	7
	The GIOD Project: Globally Interconnected Object Databases for HEP
	Introduction
	Progress
	Computing Infrastructure
	The Caltech Exemplar
	The Objectivity Database
	Networking

	Database scalability and access tests
	The "Stars" Application
	Overview of the application
	Results from the Scalability Tests using “Stars”
	Summary of Scalability Tests with “Stars”

	Scalability tests on the Caltech Exemplar
	Tests with synthetic data
	Reconstruction test
	The read-ahead optimization
	DAQ (Data Acquisition) test
	Client startup
	Tests with real physics data
	Results from tests with real physics data
	Comments on the Objectivity lockserver
	Conclusions from the Exemplar scalability tests


	The Versant ODBMS
	Code comparisons: Objectivity and Versant

	Object Database Replication from CERN to Caltech
	The HPSS NFS Interface
	The CMS H2 Test Beam OO Prototype
	CMSOO - Tracker, ECAL and HCAL software prototype
	Accessing ODBMS data from Java
	Pure Java Track Fitter
	Fitting technique

	ATM traffic from database clients
	
	Test 1 : Transfer of ~40 large files using FTP
	Test 2: CMS Event Reconstruction in one processor.
	Test 3: CMS Event Reconstruction in 16 processors.

	ATM and TCP/IP Characteristics of the Database Client traffic
	Throughput
	Network Monitoring Tool:
	Packet Formats
	The “Monitor” java application for analyzing tcpdump output
	FTP Tests through the HP-C200.
	Reconstruction with N clients
	Congestion / Staggering the start of Data Processing
	FTP Tests with the San DiegoSuper Computer Centre (SDSC)
	More FTP Tests
	CMSOO Reconstruction to a database at SDSC

	Conclusions from the detailed ATM tests


	MONARC related work€
	Tiered distributed system architecture
	Modelling the “Average Physicist” using ModNet
	Setting up the Model
	Modelling results


	SoDA
	Specification of the Users
	Specification of the Network Resources
	Interaction between Users and Network Resources
	Simulation and Analysis
	Future Work
	Summary of the SoDA work

	References
	GIOD Project Participants
	Ackowledgements
	Publications and Press


